A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Millimeter-Scale Snail Robot Based on a Light-Powered Liquid Crystal Elastomer Continuous Actuator. | LitMetric

A Millimeter-Scale Snail Robot Based on a Light-Powered Liquid Crystal Elastomer Continuous Actuator.

Macromol Rapid Commun

Photonic Nanostructure Facility, Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warsaw, Poland.

Published: August 2019

Crawling by means of the traveling deformation of a soft body is a widespread mode of locomotion in nature-animals across scales, from microscopic nematodes to earthworms to gastropods, use it to move around challenging terrestrial environments. Snails, in particular, use mucus-a slippery, aqueous secretion-to enhance the interaction between their ventral foot and the contact surface. In this study, a millimeter-scale soft crawling robot is demonstrated that uses a similar mechanism to move efficiently in a variety of configurations: on horizontal, vertical, as well as upside-down surfaces; on smooth and rough surfaces; and through obstacles comparable in size to its dimensions. The traveling deformation of the robot soft body is generated via a local light-induced phase transition in a liquid crystal elastomer and resembles the pedal waves of terrestrial gastropods. This work offers a new approach to micro-engineering with smart materials as well as a tool to better understand this mode of locomotion in nature.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.201900279DOI Listing

Publication Analysis

Top Keywords

liquid crystal
8
crystal elastomer
8
traveling deformation
8
soft body
8
mode locomotion
8
millimeter-scale snail
4
snail robot
4
robot based
4
based light-powered
4
light-powered liquid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!