We uncover a novel phenomenon from a recent artificial light-harvesting experiment [P.-Z. Chen et al., Angew. Chem., Int. Ed. Engl. 55, 2759 (2016)ACIEAY0570-083310.1002/anie.201510503] on organic nanocrystals of self-assembled difluoroboron chromophores. A resonant confinement of a polariton under strong photon-exciton coupling is predicted to exist within the microcavity of the crystal's own natural boundaries. Moreover, the radiative energy of a localized exciton falls into the spectrum of confinement. Hence, in the experiment, the spontaneous emission of an excited pigment would undergo a two-step process. It should first decay to an excitonic polariton trapped by the cavity resonance. The intermediate polariton could then funnel the energy directly to a doped acceptor, leading to the over 90% transfer efficiency observed at less than 1/1000 acceptor/donor ratio. The proposed mechanism is supported by parameter-free analyses entirely based on experiment data. Our finding may imply possible polariton-mediated pathways for energy transfers in biological photosynthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.122.257402 | DOI Listing |
Sci Rep
January 2025
Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing, 100081, China.
Loess is extensively developed on both sides of the Longwu River, a tributary of the Yellow River, Tongren County, Qinghai Province. The engineering geological characteristics are complex, and landslide disasters are highly developed. Based on field geological surveys and physical property analysis of the loess in this area, this study analyzes the influence of water content, consolidation pressure, and soil disturbance on the dynamic characteristics of loess using GDS dynamic triaxial tests.
View Article and Find Full Text PDFChemistry
January 2025
Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, State Key Laboratory of Materials Processing and Die & Mold Technology, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
Block copolymer (BCP) microparticles, which exhibit rapid change of morphology and physicochemical property in response to external stimuli, represent a promising avenue for the development of programmable smart materials. Among the methods available for generating BCP microparticles with adjustable morphologies, the confined assembly of BCPs within emulsions has emerged as a particularly facile and versatile approach. This review provides a comprehensive overview of the role of responsive surfactants in modulating interfacial interactions at the oil-water interface, which facilitates controlled BCP microparticle morphology.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, UK.
In radio frequency identification (RFID), differences in spectrum policies and tag misreading in different countries are the two main issues that limit its application. To solve these problems, this article proposes a composite right/left-handed transmission line (CRLH-TL)-based reconfigurable antenna for ultra-high frequency near-field and far-field RFID reader applications. The CRLH-TL is achieved using a periodically capacitive gap-loaded parallel plate line.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry and Biochemistry, State University of New York Brockport, Brockport, NY 14420, USA.
Non-ionic surfactants are an important solvent in the field of green chemistry with tremendous application potential. Understanding their phase properties in bulk or in confined environments is of high commercial value. In recent years, the combination of molecular dynamics (MD) simulations with multinuclear solid-state NMR spectroscopy and calorimetric techniques has evolved into the most powerful tool for their investigation.
View Article and Find Full Text PDFPediatr Radiol
January 2025
Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
Background: Motion correction methods based on slice-to-volume registration (SVR) for fetal magnetic resonance imaging (MRI) allow reconstruction of three-dimensional (3-D) isotropic images of the fetal brain and body. However, all existing SVR methods are confined to research settings, which limits clinical integration. Furthermore, there have been no reported SVR solutions for low-field 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!