Diagonal Born-Oppenheimer Corrections within the Nuclear-Electronic Orbital Framework.

J Phys Chem Lett

Department of Chemistry , Yale University, 225 Prospect Street , New Haven , Connecticut 06520 , United States.

Published: August 2019

The nuclear-electronic orbital (NEO) method treats specified nuclei, typically protons, quantum mechanically on the same level as the electrons. This approach invokes the Born-Oppenheimer separation between the quantum and classical nuclei, as well as the conventional separation between the electrons and classical nuclei. To test the validity of this additional adiabatic approximation, herein the diagonal Born-Oppenheimer correction (DBOC) within the NEO framework is derived, analyzed, and calculated numerically for a set of eight molecules. Inclusion of the NEO DBOC is found to change the equilibrium bond lengths by only ∼10 Å and the heavy atom vibrational stretching frequencies by ∼1-2 cm per quantum proton bonded to an atom participating in the vibrational mode. These results imply that the DBOC does not significantly impact molecular properties computed with the NEO approach, although it can be included when necessary. Understanding the physical characteristics and quantitative contributions of the DBOC has broad implications for applications of multicomponent density functional theory and wave function methods.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.9b01803DOI Listing

Publication Analysis

Top Keywords

diagonal born-oppenheimer
8
nuclear-electronic orbital
8
classical nuclei
8
born-oppenheimer corrections
4
corrections nuclear-electronic
4
orbital framework
4
framework nuclear-electronic
4
neo
4
orbital neo
4
neo method
4

Similar Publications

The Born-Oppenheimer framework stipulates that chemistry and physics occur on potential energy surfaces VBO(X) parameterized by a nuclear coordinate X, which are built by diagonalizing a BO Hamiltonian ĤBO(X). However, such a framework cannot recover many measurable chemical and physical features, including vibrational circular dichroism spectra. In this article, we show that a phase-space electronic Hamiltonian ĤPS(X,P), parameterized by both nuclear position X and momentum P, with a similar computational cost as solving ĤBO(X), can recover not just experimental vibrational circular dichroism signals but also a meaningful electronic current density that explains the features of the vibrational circular dichroism rotational strengths.

View Article and Find Full Text PDF

Second-Order Mass-Weighting Scheme for Atom-Centered Density Matrix Propagation Molecular Dynamics.

J Chem Theory Comput

October 2024

Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy.

The atom-centered density matrix propagation (ADMP) method is an extended Lagrangian approach to ab initio molecular dynamics, which includes the density matrix in an orthonormalized atom-centered Gaussian basis as additional, fictitious, electronic degrees of freedom, classically propagated along with the nuclear ones. A high adiabaticity between the nuclear and electronic subsystems is mandatory in order to keep the trajectory close to the Born-Oppenheimer (BO) surface. In this regard, the fictitious electronic mass , being a symmetric, nondiagonal matrix in its most general form, represents a free parameter, exploitable to optimize the propagation of the electronic density.

View Article and Find Full Text PDF

Fulminic acid: a quasibent spectacle.

Phys Chem Chem Phys

September 2024

Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA.

Fulminic acid (HCNO) played a critical role in the early development of organic chemistry, and chemists have sought to discern the structure and characteristics of this molecule and its isomers for over 200 years. The mercurial nature of the extremely flat H-C-N bending potential of fulminic acid, with a nearly vanishing harmonic vibrational frequency at linearity, remains enigmatic and refractory to electronic structure theory, as dramatic variation with both orbital basis set and electron correlation method is witnessed. To solve this problem using rigorous electronic wavefunction methods, we have employed focal point analyses (FPA) to ascertain the limit of optimized linear and bent geometries, corresponding vibrational frequencies, and the HCN + O() → HCNO reaction energy.

View Article and Find Full Text PDF

This article describes a method for calculating higher order or nonadiabatic corrections in Born-Oppenheimer theory and its interaction with the translational degrees of freedom. The method uses the Wigner-Weyl correspondence to map nuclear operators into functions on the classical phase space and the Moyal star product to represent operator multiplication on those functions. These are explained in the body of the paper.

View Article and Find Full Text PDF

The (time-independent) Schrödinger equation for atomistic systems is solved by using the adiabatic potential energy curves (PECs) and the associated adiabatic approximation. In cases where interactions between electronic states become important, the associated nonadiabatic effects are taken into account via derivative couplings (DDRs), also known as nonadiabatic couplings (NACs). For diatomic molecules, the corresponding PECs in the adiabatic representation are characterized by avoided crossings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!