Around 100 nm thick TiO layers deposited by atomic layer deposition (ALD) have been investigated as anticorrosion protective films for silicon-based photoanodes decorated with 5 nm NiFe catalyst in highly alkaline electrolyte. Completely amorphous layers presented high resistivity; meanwhile, the ones synthesized at 300 °C, having a fully anatase crystalline TiO structure, introduced insignificant resistance, showing direct correlation between crystallization degree and electrical conductivity. The conductivity through crystalline TiO layers has been found not to be homogeneous, presenting preferential conduction paths attributed to grain boundaries and defects within the crystalline structure. A correlation between the conductivity atomic force microscopy measurements and grain interstitials can be seen, supported by high-resolution transmission electron microscopy cross-sectional images presenting defective regions in crystalline TiO grains. It was found that the conduction mechanism goes through the injection of electrons coming from water oxidation from the electrocatalyst into the TiO conduction band. Then, electrons are transported to the Si/SiO/TiO interface where electrons recombine with holes given by the pn-Si junction. No evidences of intra-band-gap states in TiO responsible of conductivity have been detected. Stability measurements of fully crystalline samples over 480 h in anodic polarization show a continuous current decay. Electrochemical impedance spectroscopy allows to identify that the main cause of deactivation is associated with the loss of TiO electrical conductivity, corresponding to a self-passivation mechanism. This is proposed to reflect the effect of OH ions diffusing in the TiO structure in anodic conditions by the electric field. This fact proves that a modification takes place in the defective zone of the layer, blocking the ability to transfer electrical charge through the layer. According to this mechanism, a regeneration of the degradation process is demonstrated possible based on ultraviolet illumination, which contributes to change the occupancy of TiO electronic states and to recover the defective zone's conductivity. These findings confirm the connection between the structural properties of the ALD-deposited polycrystalline layer and the degradation mechanisms and thus highlight main concerns toward fabricating long-lasting metal-oxide protective layers for frontal illuminated photoelectrodes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b05724DOI Listing

Publication Analysis

Top Keywords

crystalline tio
12
tio
10
degradation mechanisms
8
atomic layer
8
tio layers
8
tio structure
8
electrical conductivity
8
layer
6
conductivity
6
crystalline
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!