Advances in nanotechnology in the last decades have paved the way for significant achievements in diagnosis and treatment of various diseases. Different types of functional nanostructures have been explored and utilized as tools for addressing the challenges in detection or treatment of diseases. In particular, one-dimensional nanostructures hold great promise in theranostic applications due to their increased surface area-to-volume ratios, which allow better targeting, increased loading capacity and improved sensitivity to biomolecules. Stable polymeric nanostructures that are stimuli-responsive, biocompatible and biodegradable are especially preferred for bioapplications. In this review, different synthesis techniques of polymeric one-dimensional nanostructures are explored and functionalization methods of these nanostructures for specific applications are explained. Biosensing and drug delibiovery applications of these nanostructures are presented in detail.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab2e2c | DOI Listing |
Protein Pept Lett
January 2025
Department of Exact Sciences, State University of Santa Cruz - UESC, Rodovia Jorge Amado Km 16, CEP: 45662-900, Ilhéus - BA, Brazil.
Introduction: Tritrpticin (TRP3) is a peptide belonging to the cathelicidin family and has a broad spectrum of antimicrobial activity. However, this class of biomolecules can be easily degraded in the body, making it necessary to use an efficient transport system. The ability to form stable nanostructures from the interaction of glycyrrhizin saponin with the pluronic polymer F127 was demonstrated, forming mixed biopolymeric micelles, highly promising as drug carriers.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Forensic Science, School for Bio Engineering and Bio Sciences, Lovely Professional University, Phagwara, Punjab, India.
The development of pH-directed nanoparticles for tumor targeting represents a significant advancement in cancer biology and therapeutic strategies. These innovative materials have the ability to interact with the unique acidic microenvironment of tumors. They enhance drug delivery, increase therapeutic efficacy, and reduce systemic toxicity.
View Article and Find Full Text PDFChem Sci
January 2025
Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India https://www.jncasr.ac.in/faculty/tmaji.
Coordination-driven metallo-supramolecular polymers hold significant potential as highly efficient catalysts for photocatalytic CO reduction, owing to the covalent integration of the light harvesting unit, catalytic center and intrinsic hierarchical nanostructures. In this study, we present the synthesis, characterization, and gelation behaviour of a novel low molecular weight gelator (LMWG) integrating a benzo[1,2-:4,5-']dithiophene core with terpyridine (TPY) units alkyl amide chains (TPY-BDT). The two TPY ends of the TPY-BDT unit efficiently chelate with metal ions, enabling the formation of a metallo-supramolecular polymer that brings together the catalytic center and a photosensitizer in close proximity, maximizing catalytic efficiency for CO reduction.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Kingdom of Saudi Arabia.
Herein, electrochemical sensing of paracetamol in polluted water was achieved using facile-synthesized tungsten oxide nanoparticles. Ion exchange resin has been used as a sustainable preparation route, while the prepared nanoparticles have been characterized by XRD and SEM analyses. Orthorhombic WO·HO nano-plates have been synthesized a facile preparation method, where the crystal size has been calculated as 25-33 nm, and these results were used to create a 3D model of the prepared WO·HO nano-plates.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China.
Nanozymes play a pivotal role in mitigating excessive oxidative stress, however, determining their specific enzyme-mimicking activities for intracellular free radical scavenging is challenging due to endo-lysosomal entrapment. In this study, we employ a genetic engineering strategy to generate ionizable ferritin nanocages (iFTn), enabling their escape from endo-lysosomes and entry into the cytoplasm. Specifically, ionizable repeated Histidine-Histidine-Glutamic acid (9HE) sequences are genetically incorporated into the outer surface of human heavy chain FTn, followed by the assembly of various chain-like nanostructures via a two-armed polyethylene glycol (PEG).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!