Background: In a previous trial, in-line filtration significantly prevented postoperative phlebitis associated with short peripheral venous cannulation. This study aims to describe the cost-effectiveness of in-line filtration in reducing phlebitis and examine patients' perception of in-hospital vascular access management with and without in-line filtration.
Methods: We analysed costs associated with in-line filtration: these data were prospectively recorded during the previous trial. Furthermore, we performed a follow-up for all the 268 patients enrolled in this trial. Among these, 213 patients responded and completed 6 months after hospital discharge questionnaires evaluating the perception of and satisfaction with the management of their vascular access.
Results: In-line filtration group required 95.60€ more than the no-filtration group (a mean of € 0.71/patient). In terms of satisfaction with the perioperative management of their short peripheral venous cannulation, 110 (82%) and 103 (76.9%) patients, respectively, for in-line filtration and control group, completed this survey. Within in-line filtration group, 97.3% of patients were satisfied/strongly satisfied; if compared with previous experiences on short peripheral venous cannulation, 11% of them recognised in-line filtration as a relevant causative factor in determining their satisfaction. Among patients within the control group, 93.2% were satisfied/strongly satisfied, although up to 30% of them had experienced postoperative phlebitis. At the qualitative interview, they recognised no difference than previous experiences on short peripheral venous cannulation, and mentioned postoperative phlebitis as a common event that 'normally occurs' during a hospital stay.
Conclusion: In-line filtration is cost-effective in preventing postoperative phlebitis, and it seems to contribute to increasing patient satisfaction and reducing short peripheral venous cannulation-related discomfort.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588396 | PMC |
http://dx.doi.org/10.1177/1129729819861187 | DOI Listing |
Water Res
January 2025
Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
Mineral scaling and scaling-induced wetting are critical issues in membrane distillation (MD) during treatment of saline wastewaters. Gypsum scaling and scaling-induced wetting in MD were successfully regulated by heterogeneous crystallization with in-line granular filtration in this study. Stable water recovery increased from 32.
View Article and Find Full Text PDFMol Med
January 2025
Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China.
Background: Uremia (UR) is caused by increased UR-related toxins in the bloodstream. We explored the mechanism of enterogenous toxin methylmalonic acid (MMA) in calcium-phosphorus metabolic disorder in UR rats via the Wnt/β-catenin pathway.
Methods: The UR rat model was established by 5/6 nephrectomy.
Int J Gen Med
January 2025
Department of Urology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.
Objective: This study investigated the efficacy of comprehensive management and predictable inflammatory markers for idiopathic retroperitoneal fibrosis (iRPF)-related hydronephrosis outcomes.
Methods: Patients with iRPF-related hydronephrosis underwent surgical (ureteral stent and/or nephrostomy tube placement) and medical (corticosteroid-based multiple immunosuppressants) management were classified according to stent-indwelling outcomes. Univariate analysis of clinical profiles was conducted to screen possible predictors of hydronephrosis remission.
ACS Appl Eng Mater
December 2024
Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.
Bull Environ Contam Toxicol
December 2024
Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia.
Microplastics (MPs) are tiny plastic pieces having a diameter of less than 5 mm. They can arise from larger plastic debris that degrades over time, synthetic fibres from clothing, microbeads in personal care items and even larger plastic debris. Sea cucumbers are marine creatures vital to the ocean's ecosystem as they assist in maintaining a clean seabed and recycle nutrients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!