AI Article Synopsis

  • Some mycobacteria species can be genetically modified to convert sterols into useful steroid synthons, aided by their unique cell wall that effectively absorbs sterols.
  • Using cell wall inhibitors like vancomycin and glycine has shown to boost sterol conversion by disrupting a key step in their cell wall synthesis.
  • Altering specific genes (pbpA and pbpB) in the mycobacteria resulted in significant changes in cell morphology and a 28% increase in the production of a steroid compound (4-HBC), demonstrating that modifying the cell wall can enhance sterol utilization.

Article Abstract

Some species of mycobacteria have been modified to transform sterols to valuable steroid synthons. The unique cell wall of mycobacteria has been recognized as an important organelle to absorb sterols. Some cell wall inhibitors (e.g., vancomycin and glycine) have been validated to enhance sterol conversion by interfering with transpeptidation in peptidoglycan biosynthesis. Therefore, two transpeptidase genes, pbpA and pbpB, were selected to rationally modify the cell wall to simulate the enhancement effect of vancomycin and glycine on sterol conversion in a 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC) producing strain (WIII). Unexpectedly, the pbpA or pbpB gene augmentation was conducive to the utilization of sterols. The pbpB augmentation strain WIII-pbpB was further investigated for its better performance. Compared to WIII, the morphology of WIII-pbpB was markedly changed from oval to spindle, indicating alterations of the cell wall. Biochemical analysis indicated that the altered cell wall properties of WIII-pbpB might contribute to the positive effect on sterol utilization. The productivity of 4-HBC was enhanced by 28% in the WIII-pbpB strain compared to that of WIII. These results demonstrated that the modification of peptidoglycan synthesis can improve the conversion of sterols to steroid synthons in mycobacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jobm.201900159DOI Listing

Publication Analysis

Top Keywords

cell wall
20
steroid synthons
12
conversion sterols
8
sterols steroid
8
peptidoglycan synthesis
8
vancomycin glycine
8
sterol conversion
8
pbpa pbpb
8
compared wiii
8
sterols
5

Similar Publications

Microcystin-LRs (MC-LR) produced by harmful cyanobacterial blooms (HCBs) pose significant hepatotoxic risks to both the environment and public health. Despite the identification and characterization of a limited number of MC-LR degrading bacteria, the challenge of safely removing MC-LRs from freshwater systems without disrupting aquatic ecosystems remains substantial. This study focused on the isolation of lactic acid bacteria from Bapshikhe, a traditional Korean fermented food, and investigated the mechanisms underlying the degradation of MC-LRs by these bacteria.

View Article and Find Full Text PDF

Electroreduction of CO2 to CO represents a highly promising way for artificial carbon cycling, but obtaining high selectivity over a wide potential window remains a challenge due to the sluggish CO generation and diffusion kinetics. Here we report an integration of long-range P modified asymmetrical bismuth atomic site on an ordered macroporous carbon skeleton with mesoporous "wall" (MW-BiN3-POMC) for efficient electroreduction of CO2. In-depth in-situ investigations with theoretical computations reveal that the incorporation of long-range P atom is able to strengthen the orbital interaction between the C 2p of CO2 and Bi 6p, thereby establishing an electronic transport bridge for the activation of CO2 molecule.

View Article and Find Full Text PDF

Bacteriophages are viruses infecting bacteria. The vast majority of them bear a tail, allowing host recognition, cell wall perforation, and DNA injection into the host cytoplasm. Using electron cryo-microscopy (cryo-EM) and single particle analysis, we determined the organization of the tail proximal extremity of siphophage T5 that possesses a long flexible tail and solved the structure of its tail terminator protein p142 (TrP).

View Article and Find Full Text PDF

The peptidoglycan (PG) cell wall is the primary protective layer of bacteria, making the process of PG synthesis a key antibiotic target. Class A penicillin-binding proteins (aPBPs) are a family of conserved and ubiquitous PG synthases that fortify and repair the PG matrix. In gram-negative bacteria, these enzymes are regulated by outer-membrane tethered lipoproteins.

View Article and Find Full Text PDF

Antimicrobial resistance in methicillin-resistant (MRSA) is a major global health challenge. This study reports the design and synthesis of novel phenyltriazole derivatives as potential anti-MRSA agents. The new scaffold replaces the thiazole core with a 1,2,3-triazole ring, enhancing antimicrobial efficacy and physicochemical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: