Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Activation of macrophages is a key event for the pathogenesis of various inflammatory diseases. Notch signaling pathway recently has been found to be a critical pathway in the activation of proinflammatory macrophages. Salidroside (Sal), one of main bioactive components in Rhodiola crenulata (Hook. F. et Thoms) H. ohba, reportedly possesses anti-inflammatory activity and ameliorates inflammation in alcohol-induced hepatic injury. However, whether Sal regulates the activation of proinflammatory macrophages through Notch signaling pathway remains unknown. The present study investigated the effects of Sal on macrophage activation and its possible mechanisms by using both alcohol and lipopolysaccharide (LPS) to mimic the microenvironment of alcoholic liver. Detection of THP-1-derived macrophages exhibited that Sal could significantly decrease the expression of tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β) and IL-6 in the macrophages at both mRNA and protein levels. Furthermore, Sal significantly suppressed NF-κB activation via Notch-Hes signaling pathway in a dose-dependent manner. Moreover, in the microenvironment of alcoholic liver, the expression of Notch-dependent pyruvate dehydrogenase phosphatase 1 (PDP1) was elevated, and that of M1 gene expression [inducible NO synthase (NOS2)] was up-regulated. These changes could all be effectively ameliorated by Sal. The aforementioned findings demonstrated that Sal could inhibit LPS-ethanol-induced activation of proinflammatory macrophages via Notch signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11596-019-2069-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!