The removal of organic micro-pollutants (OMPs) from landfill leachate in constructed wetland (CW) media having different material mixtures of sand (S), clay (C), and iron powder (Fe) was investigated using experimental column study. The use of S:C:Fe media consisting of 60:30:10% (w/w) and cattail as vegetation was found optimum for the removals of 2,6-DTBP, BHT, DEP, DBP, and DEHP at 67.5-75.4% during long-term operation of 373 days. Adsorption and biodegradation were confirmed as predominant mechanisms for their removal in CW media but their contribution in total removal varied depending on chemical properties of OMPs. Adsorption kinetic could be well explained by pseudo-second-order whereas biodegradation kinetic followed first-order reaction. The adsorption affinity of OMPs to CW media was S:C:Fe > S:C > S in descending order. This study demonstrated high and sustainable removal of OMPs during long-term operation of CW with the optimized reactive media.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-019-06010-3 | DOI Listing |
Chem Commun (Camb)
January 2025
Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.
This review discusses the properties of strongly oxidizing radicals in organic and aqueous media and highlights the challenges in obtaining accurate values of their reduction potentials. Transient redox equilibrium methods based on the use of strong photooxidants or initiated by pulse radiolysis are shown to provide versatile approaches for decoupling electron transfer reactions from follow-up reactivity of unstable radical species, resulting in accurate values of reduction potentials of very positive couples, including some solvent radical cations. We also show that correlations of reduction potentials with Hammett ∑+p parameters, as well as gas phase ionization potentials, can be used to estimate the redox properties of unknown couples within a homologous series of compounds.
View Article and Find Full Text PDFNat Commun
January 2025
School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.
Colloidal nanocrystals inherently undergo structural changes during chemical reactions. The robust structure-property relationships, originating from their nanoscale dimensions, underscore the significance of comprehending the dynamic structural behavior of nanocrystals in reactive chemical media. Moreover, the complexity and heterogeneity inherent in their atomic structures require tracking of structural transitions in individual nanocrystals at three-dimensional (3D) atomic resolution.
View Article and Find Full Text PDFFront Chem
January 2025
Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan.
This study investigates the significance of single-walled (SWCNTs) and multi-walled (MWCNTs) carbon nanotubes with a convectional fluid (water) over a vertical cone under the influences of chemical reaction, magnetic field, thermal radiation and saturated porous media. The impact of heat sources is also examined. Based on the flow assumptions, the fundamental flow equations are modeled as partial differential equations (PDEs).
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
Light metal-based nanomaterials are widely used for energy storage due to their high energy density and surface-to-volume ratio. However, their high reactivity is paradoxically both the source of advantageous properties and a hurdle to the fabrication of stable nanostructures. Here, we demonstrate the formation of nanoporous Mg via chemical redox agent-driven dealloying, which ensures minimized surface passivation and results in fine nanostructures with <50 nm of interconnected metallic ligament despite the labile chemical properties of Mg.
View Article and Find Full Text PDFHeliyon
January 2025
UdA-TechLab, Research Center, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
Survival rate of head and neck squamous cell carcinomas (HNSCC) patients are still to date very poor, and the application of innovative clinical approaches are urgently needed. Cold atmospheric plasmas (CAPs) are partially ionized gases that have shown anti-tumor effectiveness over a wide range of cancer types with potential application into clinics. However, the comprehension of the mechanisms underlying indirect CAP effects plays a key role for the prediction of treatment outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!