Replication-selective tumor-specific viruses represent a novel approach for treating neoplastic diseases. These vectors are designed to induce virus-mediated lysis of tumor cells after selective intracellular virus propagation. For targeting cancer cells, the use of tissue- or cell-specific promoters that are expressed in diverse tumor types but silent in normal cells is required. Human telomerase is highly active in more than 85% of primary cancers, regardless of tissue origin, and its activity is closely correlated with human telomerase reverse transcriptase (hTERT) expression. We constructed an attenuated adenovirus 5 vector (telomelysin, OBP-301) in which the hTERT promoter element drives expression of E1 genes. As only tumor cells that express the telomerase can activate this promoter, the hTERT proximal promoter allows for preferential expression of viral genes in tumor cells, leading to selective viral replication and oncolytic cell death. Upon US Food and Drug Administration approval, a phase 1 dose-escalation study of intratumoral injection of telomelysin for various solid tumors has been completed to confirm the safety, tolerability, and feasibility of the agent. Moreover, we found that adenoviral E1B 55-kDa protein in telomelysin inhibits the radiation-induced DNA repair machinery. Thus, tumor cells infected with telomelysin could be rendered sensitive to ionizing radiation. Recently, we assessed the safety and efficacy of intratumoral injection of telomelysin with radiotherapy in esophageal cancer patients not suited for standard treatments. This review highlights some very promising clinical advances in cancer therapeutic technologies using telomerase-specific oncolytic virotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6635679 | PMC |
http://dx.doi.org/10.1002/ags3.12270 | DOI Listing |
Clin J Gastroenterol
December 2024
Department of Diagnostic Pathology, National Hospital Organization Shizuoka Medical Center, 762-1 Nagasawa, Shimizu, Sunto District, Shizuoka, 411-0904, Japan.
Surgical resection is the only curative treatment for cholangiocarcinoma, but it is often diagnosed at advanced stages, making surgical resection infeasible. Recently, the concept of conversion surgery has expanded the indications for surgical treatment, thanks to advancements in both perioperative management and chemotherapy. However, it remains unclear which patients benefit most from this treatment strategy.
View Article and Find Full Text PDFMol Divers
December 2024
Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, People's Republic of China.
Overexpressed AXL kinase is involved in various human malignancies, which incurs tumor progression, poor prognosis, and drug resistance. Suppression of the aberrant AXL axis with genetic tools or small-molecule inhibitors has achieved valid antitumor efficacies in both preclinical studies and clinical antitumor campaigns. Herein we will report the design, synthesis, and structure-activity relationship (SAR) exploration of a series of anilinopyrimidine type II AXL inhibitors.
View Article and Find Full Text PDFDaru
December 2024
Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Objective(s): Some forms of breast cancer such as triple-negative phenotype, are serious challenge because of high metastatic cases, high mortality and resistance to conventional therapy motivated the search for alternative treatment approaches. Nanomaterials are promising candidates and suitable alternatives for improving tumor and cancer cell treatments.
Materials And Methods: Biosynthesis of ZnO NPs by help of Berberis integerrima fruit extract, has been done.
ACS Nano
December 2024
Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518100, P. R. China.
Protein hydrolysis targeted chimeras (PROTACs) represent a different therapeutic approach, particularly relevant for overcoming challenges associated with traditional small molecule inhibitors. These challenges include targeting difficult proteins that are often deemed "undruggable" and addressing issues of acquired resistance. PROTACs employ the body's own E3 ubiquitin ligases to induce the degradation of specific proteins of interest (POIs) through the ubiquitin-proteasome pathway.
View Article and Find Full Text PDFACS Biomater Sci Eng
December 2024
Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
Polymer based nanoformulations offer substantial prospects for efficacious chemotherapy delivery. Here, we developed a pH-responsive polymeric nanoparticle based on acidosis-triggered breakdown of boronic ester linkers. A biocompatible hyaluronic acid (HA) matrix served as a substrate for carrying a doxorubicin (DOX) prodrug which also possesses natural affinity for CD44 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!