A search for extremophile organisms producing bioactive compounds led us to isolate a microalga identified as Galdieria sp. USBA-GBX-832 from acidic thermal springs. We have cultured Galdieria sp. USBA-GBX-832 under autotrophic, mixotrophic and heterotrophic conditions and determined variations of its production of biomass, lipids and PUFAs. Greatest biomass and PUFA production occurred under mixotrophic and heterotrophic conditions, but the highest concentration of lipids occurred under autotrophic conditions. Effects of variations of carbon sources and temperature on biomass and lipid production were evaluated and factorial experiments were used to analyze the effects of substrate concentration, temperature, pH, and organic and inorganic nitrogen on biomass production, lipids and PUFAs. Production of biomass and lipids was significantly dependent on temperature and substrate concentration. Greatest accumulation of PUFAs occurred at the lowest temperature tested. PUFA profiles showed trace concentrations of arachidonic acid (C) and eicosapentaenoic acid (C). This is the first time synthesis of these acids has been reported in Galdieria. These findings demonstrate that under heterotrophic conditions this microalga's lipid profile is significantly different from those observed in other species of this genus which indicates that the culture conditions evaluated are key determinants of these organisms' responses to stress conditions and accumulation of these metabolites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6658668 | PMC |
http://dx.doi.org/10.1038/s41598-019-46645-3 | DOI Listing |
Bioresour Technol
December 2024
CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China. Electronic address:
Low protein content under heterotrophic conditions limits the industrial production of proteins by microalgae. In this study, Graesiella emersonii WBG-1 efficiently synthesized and accumulated proteins (64.03%) under heterotrophic conditions, distinguishing it from other microalgae.
View Article and Find Full Text PDFSci Total Environ
December 2024
Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China. Electronic address:
Increasing nitrogen level is one of the most serious environmental problems in global natural waters, disturbing the stability of function and structure of aquatic ecosystem. As important functional group, mixotrophs with plastic metabolism modes perform high adaptations under changing environments, potentially with positive biogeochemical consequences. Here we focus on the trophic plasticity of a model eukaryotic microorganism, mixotrophic Ochromonas under increasing nitrogen and tested the role of osmo-mixotrophy (= mixotrophy) on the physiology of Ochromonas.
View Article and Find Full Text PDFBioresour Technol
February 2025
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
A novel mixotrophic denitrification biofilter for nitrate removal using polycaprolactone and thiosulfate (MD-PT) as electron donors was investigated. MD-PT achieved high nitrate removal efficiency of approximately 99.8 %.
View Article and Find Full Text PDFEnviron Pollut
January 2025
School of Life and Environmental Sciences, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang, 312000, PR China. Electronic address:
Current strategies primarily utilize heterotrophic or mixotrophic bioreduction for the simultaneous removal of Cr(VI) and NO from groundwater. However, given the oligotrophic nature of groundwater, autotrophic bioreduction could be more appropriate, though it remains notably underdeveloped. Here, an autotrophic bioreduction technology utilizing biochar (BC)-assisted zero valent iron (ZVI) is proposed.
View Article and Find Full Text PDFSci Total Environ
December 2024
Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory for Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China. Electronic address:
Sulfur-based mixotrophic denitrification has significant potential as a promising denitrification technology for treating low ratio of carbon-to‑nitrogen (C/N) wastewater. This paper provided an in-depth and comprehensive overview of the sulfur-based mixotrophic denitrification process and discussed the underlying mechanisms and functional microorganisms. Possible electron transfer pathways involved in the sulfur-based mixotrophic denitrification process are also analyzed in detail.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!