Advances have been made in the treatment for osteochondral defects of the talus, but these injuries continue to be a challenge for foot and ankle surgeons. We present an arthroscopically assisted technique that uses an allogenic cartilage graft in treating an osteochondral lesion of the medial dome of the talus. A brief discussion on current surgical options for osteochondral defects of the talus is also provided.

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.jfas.2018.12.034DOI Listing

Publication Analysis

Top Keywords

osteochondral defects
8
defects talus
8
arthroscopic implantation
4
implantation cartilage
4
cartilage matrix
4
osteochondral
4
matrix osteochondral
4
osteochondral defect
4
talus
4
defect talus
4

Similar Publications

Osteochondral defects (OCD) pose a significant clinical challenge due to the limited self-repair capacity of cartilage, leading to pain, joint dysfunction, and progression to osteoarthritis. Cellular implantations of adult mesenchymal stem cells (MSCs) enhanced with treatment of factors, such as small molecule Kartogenin (KGN) to promote chondrogenic differentiation, are promising but these cells often encounter hypertrophy during differentiation, compromising long-term stability. Induced pluripotent stem cell-derived MSCs (iMSCs) offer greater proliferative and differentiation capacity than MSCs and may provide a superior source of cells for cartilage repair.

View Article and Find Full Text PDF

Advancement of 3D biofabrication in repairing and regeneration of cartilage defects.

Biofabrication

January 2025

Department of Orthopaedics, Tangdu Hospital Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi 'an City, Xi'an, Shaanxi, 710038, CHINA.

Three-dimensional (3D) bioprinting, an additive manufacturing technology, fabricates biomimetic tissues that possess natural structure and function. It involves precise deposition of bioinks, including cells, and bioactive factors, on basis of computer-aided 3D models. Articular cartilage injurie, a common orthopedic issue.

View Article and Find Full Text PDF

Background: Osteochondral allograft transplantation (OCA) is well established as a viable chondral restoration procedure for the treatment of symptomatic, focal chondral defects of the knee. The efficacy of secondary OCA in the setting of failed index cartilage repair or restoration is poorly understood.

Purpose: To evaluate radiographic and clinical outcomes, failures, and reoperations after OCA after failed index cartilage repair or restoration of the knee.

View Article and Find Full Text PDF

Purpose: Cartilage repair necessitates adjunct therapies such as cell-based approaches, which commonly use MSCs and chondrocytes but is limited by the formation of fibro-hyaline cartilage. Articular cartilage-derived chondroprogenitors(CPs) offer promise in overcoming this, as they exhibit higher chondrogenic and lower hypertrophic phenotypes. The study aimed to compare the efficacy of various cell types derived from adult and foetal cartilage suspended in platelet-rich plasma(PRP) in repairing chondral defects in an Ex-vivo Osteochondral Unit(OCU) model.

View Article and Find Full Text PDF

Osteochondritis dissecans is a rare condition characterized by the deterioration of a small area of bone and cartilage without infection. Its exact cause is unclear, though factors such as abnormal bone development, joint pressure, repetitive injuries, inadequate blood supply, and genetic links have been observed. In this case, a 27-year-old woman experienced chronic right knee pain following a twisting injury, which led to reduced mobility and mild pain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!