Background: Genetic loss-of-function variants (LoFs) associated with disease traits are increasingly recognized as critical evidence for the selection of therapeutic targets. We integrated the analysis of genetic and clinical data from 10,511 individuals in the Mount Sinai BioMe Biobank to identify genes with loss-of-function variants (LoFs) significantly associated with cardiovascular disease (CVD) traits, and used RNA-sequence data of seven metabolic and vascular tissues isolated from 600 CVD patients in the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) study for validation. We also carried out in vitro functional studies of several candidate genes, and in vivo studies of one gene.
Results: We identified LoFs in 433 genes significantly associated with at least one of 10 major CVD traits. Next, we used RNA-sequence data from the STARNET study to validate 115 of the 433 LoF harboring-genes in that their expression levels were concordantly associated with corresponding CVD traits. Together with the documented hepatic lipid-lowering gene, APOC3, the expression levels of six additional liver LoF-genes were positively associated with levels of plasma lipids in STARNET. Candidate LoF-genes were subjected to gene silencing in HepG2 cells with marked overall effects on cellular LDLR, levels of triglycerides and on secreted APOB100 and PCSK9. In addition, we identified novel LoFs in DGAT2 associated with lower plasma cholesterol and glucose levels in BioMe that were also confirmed in STARNET, and showed a selective DGAT2-inhibitor in C57BL/6 mice not only significantly lowered fasting glucose levels but also affected body weight.
Conclusion: In sum, by integrating genetic and electronic medical record data, and leveraging one of the world's largest human RNA-sequence datasets (STARNET), we identified known and novel CVD-trait related genes that may serve as targets for CVD therapeutics and as such merit further investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6657044 | PMC |
http://dx.doi.org/10.1186/s12920-019-0542-3 | DOI Listing |
JCEM Case Rep
January 2025
Department of Internal Medicine, Erasmus Medical Center, University Medical Center, 3015 CE, Rotterdam, the Netherlands.
A defect in the canonical Wnt-β-catenin pathway may lead to reduced bone strength and increased fracture risk. Sclerostin is a key inhibitor of this pathway by binding to low-density lipoprotein (LDL) receptor-related protein , thereby reducing bone formation. The effectiveness of romosozumab, a human monoclonal antibody that binds sclerostin and prevents this inhibitory effect, has been questioned in patients with inactivating genetic variants in or .
View Article and Find Full Text PDFClin Genet
December 2024
Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia.
Biallelic loss of function variant in SEC31A is associated with lethal neurodevelopmental disorder, dysmorphic features, and skeletal defects.
View Article and Find Full Text PDFJ Mol Diagn
December 2024
Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Oxford Road, Manchester, M13 9WL; Division of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester M13 9PT. Electronic address:
Pharmacogenetic guided prescribing can lead to more accurate medicine selection and dosing, improving patient outcomes and leading to better use of healthcare budgets. Loss of function (LoF) variants in CYP2C19 influence an individual's ability to metabolise clopidogrel, increasing the risk of secondary vascular events following ischemic stroke and percutaneous coronary intervention. In acute clinical contexts, centralized laboratory-based testing is too slow to inform timely clinical decision making.
View Article and Find Full Text PDFNeurogenetics
December 2024
Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
In most cases there is a single etiological factor causing neuromotor developmental delay and epilepsy while sometimes more than one gene may be involved. These include the autosomal recessive inherited CAMSAP1 gene, which is associated with cortical developmental malformations such as pachygyria and lissencephaly and the autosomal dominant inherited NBEA gene, which plays crucial roles in vesicle trafficking as well as synapse structure and function. Loss of function of both genes together is a well-known disease mechanism.
View Article and Find Full Text PDFFront Neurosci
December 2024
Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany.
Introduction: Cohen syndrome (CS) is an early-onset pediatric neurodevelopmental disorder characterized by postnatal microcephaly and intellectual disability. An accurate diagnosis for individuals with CS is crucial, particularly for their caretakers and future prospects. CS is predominantly caused by rare homozygous or compound heterozygous pathogenic variants in the vacuolar protein sorting-associated 13B () gene, which disrupt protein translation and lead to a loss of function (LoF) of the encoded VPS13B protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!