Assessing Many-Body Effects of Water Self-Ions. II: HO(HO) Clusters.

J Chem Theory Comput

Department of Chemistry and Biochemistry , University of California San Diego, La Jolla , California 92093 , United States.

Published: September 2019

The importance of many-body effects in the hydration of the hydronium ion (HO) is investigated through a systematic analysis of the many-body expansion of the interaction energy carried out at the coupled-cluster level of theory for the low-lying isomers of HO(HO) clusters with = 1-5. This is accomplished by partitioning individual fragments extracted from the whole clusters into "groups" that are classified by both the number of HO and water molecules and the hydrogen-bonding connectivity within a given fragment. Effects due to the presence of the Zundel ion, (HO), are analyzed by further partitioning fragment groups by the "context" of their parent clusters. With the aid of the absolutely localized molecular orbital energy decomposition analysis (ALMO EDA), this structure-based partitioning is found to largely correlate with the character of different many-body interactions, such as cooperative and anticooperative hydrogen bonding, within each fragment. This analysis emphasizes the importance of a many-body representation of inductive electrostatics and charge transfer in modeling the hydration of an excess proton in water. The comparison between the reference coupled-cluster many-body interaction terms with the corresponding values obtained with various exchange-correlation functionals demonstrates that many of these functionals yield an unbalanced treatment of the HO(HO) configuration space.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.9b00418DOI Listing

Publication Analysis

Top Keywords

many-body effects
8
hoho clusters
8
many-body
5
assessing many-body
4
effects water
4
water self-ions
4
self-ions hoho
4
clusters
4
clusters many-body
4
effects hydration
4

Similar Publications

Detecting Multipartite Entanglement Patterns Using Single-Particle Green's Functions.

Phys Rev Lett

December 2024

Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Division, Upton, New York 11973, USA.

We present a protocol for detecting multipartite entanglement in itinerant many-body electronic systems using single-particle Green's functions. To achieve this, we first establish a connection between the quantum Fisher information and single-particle Green's functions by constructing a set of witness operators built out of single electron creation and destruction operators in a doubled system. This set of witness operators is indexed by a momentum k.

View Article and Find Full Text PDF

MLTB: Enhancing Transferability and Extensibility of Density Functional Tight-Binding Theory with Many-body Interaction Corrections.

J Chem Theory Comput

January 2025

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.

We present a hybrid semiempirical density functional tight-binding (DFTB) model with a machine learning neural network potential as a correction to the repulsive term. This hybrid model, termed machine learning tight-binding (MLTB), employs the standard self-consistent charge (SCC) DFTB formalism as a baseline, enhanced by the HIP-NN potential as an effective many-body correction for short-range pairwise repulsive interactions. The MLTB model demonstrates significantly improved transferability and extensibility compared to the SCC-DFTB and HIP-NN models.

View Article and Find Full Text PDF

In Self-Consistent Field (SCF) calculations, the choice of initial guess plays a key role in determining the time-to-solution by influencing the number of iterations required for convergence. However, focusing solely on reducing iterations may overlook the computational cost associated with improving the accuracy of initial guesses. This study critically evaluates the effectiveness of two initial guess methods─basis set projection (BSP) and many-body expansion (MBE) on Hartree-Fock and hybrid Density Functional Theory (B3LYP and MN15) methods.

View Article and Find Full Text PDF

Proteins' flexibility is a feature in communicating changes in cell signaling instigated by binding with secondary messengers, such as calcium ions, associated with the coordination of muscle contraction, neurotransmitter release, and gene expression. When binding with the disordered parts of a protein, calcium ions must balance their charge states with the shape of calcium-binding proteins and their versatile pool of partners depending on the circumstances they transmit. Accurately determining the ionic charges of those ions is essential for understanding their role in such processes.

View Article and Find Full Text PDF

Raman and Photoluminescence Studies of Quasiparticles in van der Waals Materials.

Nanomaterials (Basel)

January 2025

Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China.

Two-dimensional (2D) layered materials have received much attention due to the unique properties stemming from their van der Waals (vdW) interactions, quantum confinement, and many-body interactions of quasi-particles, which drive their exotic optical and electronic properties, making them critical in many applications. Here, we review our past years' findings, focusing on many-body interactions in 2D layered materials, including phonon anharmonicity, electron-phonon coupling (), exciton dynamics, and phonon anisotropy based on temperature (polarization)-dependent Raman spectroscopy and Photoluminescence (PL). Our review sheds light on the role of quasi-particles in tuning the material properties, which could help optimize 2D materials for future applications in electronic and optoelectronic devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!