Multicomponent self-assembly in one pot provides an efficient way for constructing complex architectures using multiple types of building blocks with different levels of interactions orthogonally. The preparation of multiple types of building blocks typically includes tedious synthesis. Here, we developed a multicomponent synthesis/self-assembly strategy, which combined covalent interaction (C-N bond, formed through condensation of pyrylium salt with primary amine) and metal-ligand interaction (N → Zn bond, formed through 2,2':6',2″-terpyridine-Zn coordination) in one pot. The high compatibility of this pair of interactions smoothly and efficiently converted three and four types of components into the desired complex structures, which are supramolecular Kandinsky Circles and spiderwebs, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6852697PMC
http://dx.doi.org/10.1021/jacs.9b05682DOI Listing

Publication Analysis

Top Keywords

self-assembly pot
8
multiple types
8
types building
8
building blocks
8
bond formed
8
combining synthesis
4
synthesis self-assembly
4
pot construct
4
construct complex
4
complex metallo-supramolecules
4

Similar Publications

Nanodots of Transition Metal Sulfides, Carbonates, and Oxides Obtained Through Spontaneous Co-Precipitation with Silica.

Nanomaterials (Basel)

December 2024

Material Science, BASF SE, RGA/BM-B007, Carl-Bosch-Str. 38, D-67056 Ludwigshafen, Germany.

The controlled formation and stabilization of nanoparticles is of fundamental relevance for materials science and key to many modern technologies. Common synthetic strategies to arrest growth at small sizes and prevent undesired particle agglomeration often rely on the use of organic additives and require non-aqueous media and/or high temperatures, all of which appear critical with respect to production costs, safety, and sustainability. In the present work, we demonstrate a simple one-pot process in water under ambient conditions that can produce particles of various transition metal carbonates and sulfides with sizes of only a few nanometers embedded in a silica shell, similar to particles derived from more elaborate synthesis routes, like the sol-gel process.

View Article and Find Full Text PDF

In-situ Growth of Metallocluster inside Heterometal-organic Cage to Switch Electron Transfer for Targeted CO2 Photoreduction.

Angew Chem Int Ed Engl

December 2024

Northeast Normal University, Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Institute of Functional Material Chemistry, Local United Engineering Lab for Power Battery, CHINA.

Construction of metal-organic cages (MOCs) with internal modifications is a promising avenue to build enzyme-like cavities and unlocking the mystery of highly catalytic activity and selectivity of enzymes. However, current interests are mainly focused on single-metal-node cages, little achievement has been expended to metalloclusters-based architectures, and the in situ endogenous generation of metal clusters. Herein, based on the hard-soft-acids-bases (HSAB), the metalloclusters-based heterometallic MOC (Cu3VMOP) constructed of [Cu3OPz3]+ and [V6O6(OCH3)9(SO4)(CO2)3]2- clusters was obtained by one-pot method.

View Article and Find Full Text PDF

Dynamic Covalent Prodrug Nanonetworks via Reaction-Induced Self-Assembly for Periodontitis Treatment.

ACS Nano

December 2024

Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University institution, Wenzhou, Zhejiang 325035, China.

Periodontitis is characterized by dysbiotic biofilms, gingival inflammation, and bone resorption, highlighting the urgent need for a comprehensive approach to drug combination therapy. In this study, we introduce dynamic covalent nanonetworks (dcNNWs) synthesized through a one-pot, four-component reaction-induced self-assembly method using polyamines, 2-formylphenylboronic acid, epigallocatechin gallate, and alendronate. The formation of iminoboronate bonds drives the creation of dcNNWs, allowing controlled release in the periodontitis microenvironment.

View Article and Find Full Text PDF

A pair of comparable sized C-shaped bis-monodentate ligands (L1 and L2) and a linear bis-monodentate ligand (L3) complementing to the terminal-lengths of the C-shaped ligands have been identified. One-pot combination of cis-Pd(tmeda), L1 and L3 (2 : 1 : 1 ratio) in water resulted an octa-cationic 2-catenane, [Pd(tmeda)(L1)(L3)] in which two identical tetra-cationic macromonocyclic coordination rings are interlocked; however, a guest bound coordination ring was formed in presence of a selected di-anionic guest. Complexation of cis-Pd(tmeda) with a mixture of L2 and L3 (2 : 1 : 1 ratio) in water resulted the hexa-cationic macromonocyclic coordination ring, [Pd(tmeda)(L2)(L3)] whereas a guest bound coordination ring was formed in the presence of the di-anionic guest.

View Article and Find Full Text PDF

Stereodivergent Macrocyclization in Dynamic Chiral Confinement.

Chemistry

November 2024

Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China.

The absolute and relative configurations of a macrocyclic natural product bearing multiple chirality have a crucial influence on its physical and biological properties. Nevertheless, their preparation with full stereocontrol remains largely unexplored in synthetic community. Here, we show a stereodivergent macrocyclization under dynamic chiral confinement in which the stepwise chirality switching of a chiral space directs complete stereocontrol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!