Glucose Sensor Using Redox Active Oligonucleotide-Templated Silver Nanoclusters.

Nanomaterials (Basel)

The MacDiarmid Institute, Victoria University of Wellington, Wellington 6012, New Zealand.

Published: July 2019

Redox active, photoluminescent silver nanoclusters templated with oligonucleotides were developed for glucose sensing. The silver nanoclusters had a photoluminescent emission at 610 nm that reversibly changed to 530 nm upon oxidation. The reversible emission change was measured with photoluminescent spectroscopy and used to detect HO, which is a by-product of the reaction of glucose with glucose oxidase. The ratio of the un-oxidised emission peak (610 nm) and the oxidised analogue (530 nm) was used to measure glucose concentrations up to 20 mM, well within glucose levels found in blood. Also, the reversibility of this system enables the silver nanoclusters to be reused.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6722757PMC
http://dx.doi.org/10.3390/nano9081065DOI Listing

Publication Analysis

Top Keywords

silver nanoclusters
16
redox active
8
glucose
6
glucose sensor
4
sensor redox
4
active oligonucleotide-templated
4
silver
4
oligonucleotide-templated silver
4
nanoclusters
4
nanoclusters redox
4

Similar Publications

Bacterial contamination is a very serious health and environmental problem, with the main source of toxicity being lipopolysaccharides in the cell walls of Gram-negative bacteria. Therefore, the development of effective analytical methods is crucial for the detection of lipopolysaccharide content. This work facilitates the efficient generation of precisely adjustable dual-mode signals for LPS detection in surface-enhanced Raman spectroscopy (SERS) and electrochemiluminescence (ECL) by inducing anisotropic morphological evolution of Au@Ag nanocubes (Au@AgNCs) through poly-cytosine (poly-C) DNA.

View Article and Find Full Text PDF

Palladium-doped silver nanoclusters (NCs) have been highlighted for their unique physicochemical properties and potential applications in catalysis, optics, and electronics. Anion-directed synthesis offers a powerful route to control the morphology and properties of these NCs. Herein, we report a novel Pd-doped Ag NC, [Pd(H)Ag(S){SP(OPr)}] (), synthesized through the inclusion of sulfide and hydride anions.

View Article and Find Full Text PDF

Gold-silver synergism has been well documented in many scientific works dealing with luminescent nanostructures that are exploitable in biomedical and environmental application. Frequently, the ratio of Au : Ag in synthetic mixtures was varied to influence the extent of Au-Ag synergism of the resulting luminescent gold-silver nanoclusters (GSNCs). However, in our approach, a new step, maturing under differing conditions using the same Au : Ag ratio (5 : 1), has been investigated systematically for the very first time.

View Article and Find Full Text PDF

Reactive template method for synthesis of water-soluble fluorescent silver nanoclusters supported on the surface of cellulose nanofibers.

Carbohydr Polym

March 2025

Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.

There is an emerging quest for fabrication of water-soluble fluorescent silver nanoclusters (AgNCs) with long-lasting fluorescent properties and dimensional stability while being sustainable and functional. Thus, a well-known seed-mediated growth strategy has been developed to manufacture AgNCs supported onto carboxyl and aldehyde modified cellulose nanofiber (DATCNF) with ultra-small and intense fluorescence. The DATCNF acts as a reductant, template, and stabilizer while the protective ligand, 2-Mercaptonicotinic Acid (2-HMA), provides AgNCs with luminous characteristic and constrained size of 4.

View Article and Find Full Text PDF

Dimerizing DNA-AgNCs a C-Ag-C structure for fluorescence sensing with dual-output signals.

Chem Commun (Camb)

January 2025

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, People's Republic of China.

The unique insertion capability of Ag into cytosine-cytosine (C-Ag-C) mismatch-base pairs enables precise fabrication of DNA-trapped silver nanoclusters (DNA-AgNCs) through varying the DNA sequences, thereby offering precise assembly of DNA-AgNCs and demonstrating great fluorescence applications. However, most of the DNA-AgNC-based fluorescence sensors have a single output signal. Herein, we developed a dimerized DNA-AgNC system through C-Ag-C connection at the 3'-end of a designed DNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!