Graphene has drawn tremendous attention for the fabrication of actuators because of its unique chemical and structural features. Traditional graphene actuators need integration with polymers or other responsive components for shape-changeable behaviour. Searching for a sole material with asymmetric properties is difficult and challenging for actuators that are responsive to external stimulus. Herein, asymmetrically synchronous reduction and assembly of a graphene oxide (GO) film with oxygen-containing group gradients was prepared on various metal foils. Such film possessed asymmetric surface chemical components on both sides, which showed reversible deformation via alternating moisture. Importantly, we can detect the moisture change via recording the voltage pulse during self-deformation on the basis of spontaneous HO ions diffusion across the GO film without the need of power input. Finally, a smart gripper was developed using a moisture responsive GO film. Present work opens a new avenue for developing smart actuator using a sole material and simultaneously realizing the detection of deformation in self-powered mode.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ab359eDOI Listing

Publication Analysis

Top Keywords

asymmetrically synchronous
8
synchronous reduction
8
reduction assembly
8
assembly graphene
8
graphene oxide
8
oxide film
8
moisture responsive
8
sole material
8
film
5
graphene
4

Similar Publications

Low Voltage Ride Through (LVRT) is considered one of the main and serious problems facing the electrical grid. It occurs due to three-phase symmetric faults and asymmetric faults such as a double line to ground fault that applies in this system. This paper applies Static Synchronous Compensators (STATCOM) to improve the LVRT capability and dynamic performance of an electrical grid linked to a Photovoltaic (PV)/Wind hybrid system through grid disturbances.

View Article and Find Full Text PDF

This study questioned the influence of unilateral physical impairment on controlling inter-limb coordination, notably the coordination symmetry. We investigated whether unilateral physical impairment and unilateral breathing preference led to motor coordination asymmetry in eleven elite Para swimmers during 10 times 25 m in front crawl incremented in speed. Multicamera video system and five inertial measurement units were used to assess arm and leg phases and to compute symmetry of arm coordination and of arm-leg synchronisation.

View Article and Find Full Text PDF

NREM sleep improves behavioral performance by desynchronizing cortical circuits.

Science

November 2024

Department of Physiology and Biophysics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA.

Sleep improves cognitive performance, yet little is known about the neural mechanisms of this improvement. We performed multielectrode recording in macaque visual and dorsolateral prefrontal cortex while animals performed a visual discrimination task before and after non-rapid eye movement (NREM) sleep. Although sleep induces synchronized fluctuations in population activity across cortical areas, the post-sleep population activity became more desynchronized relative to the pre-sleep state.

View Article and Find Full Text PDF

Neuromodulatory processes in the brain can critically change signal processing on a cellular level, leading to dramatic changes in network level reorganization. Here, we use coupled nonidentical Kuramoto oscillators to investigate how changes in the shape of phase response curves from Type 1 to Type 2, mediated by varying ACh levels, coupled with activity-dependent plasticity may alter network reorganization. We first show that, when plasticity is absent, the Type 1 networks with symmetric adjacency matrix, as expected, exhibit asynchronous dynamics with oscillators of the highest natural frequency robustly evolving faster in terms of their phase dynamics.

View Article and Find Full Text PDF

High-Performance Circularly Polarized Phosphorescence by Confining Isolated Chromophores with Chiral Counterions.

Adv Mater

November 2024

Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.

Organic room-temperature phosphorescence (RTP) featuring circularly polarized luminescence (CPL) is highly valuable in chiroptoelectronics, but the trade-off issue between luminescence efficiency (Φ) and dissymmetry factor (g) is still challenging to be solved. Here, chiroptical ionic crystals (R/S-DNP) are constructed through ionization-induced assembly, in which isolated chromophore of carboxylic anion is tightly confined by the surrounding chiral counterions. The long-range ordered and chiral counterions with asymmetric stacking are closely connected with isolated chromophores for molecular assembly via high-density electrostatic interactions, thus enabling the simultaneous realization of excellent single-molecule RTP emission and efficient chirality transfer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!