Though the toxicity of strobilurins on non-target aquatic organisms has been characterized, the associated toxic mechanisms have not been fully explored. The present study showed that the larval stage was the most sensitive developmental stage in zebrafish, and pyraclostrobin (PY) had the highest acute toxicity to embryos, larvae, juvenile and adult with 96 h-LC at 0.048 mg/L, 0.029 mg/L, 0.039 mg/L, 0.031 mg/L respectively, when compared with the toxicity of trifloxystrobin (TR), kresoxim-methyl (KM) and azoxystrobin (AZ) at corresponding developmental stage. Then we investigated the transcriptomics and developmental toxicity of TR, KM, AZ and PY on zebrafish embryos after 72 h exposure. RNA-seq revealed that the pathways related to cell apoptosis and cancer, and cellular components organelle membrane and mitochondrion, were markedly affected after TR, KM, AZ and PY exposure during zebrafish early life stages. The results were further confirmed by the induction of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) activities, the elevation of HO, malondialdehyde (MDA) and reactive oxygen species (ROS) level, as well as the reduction of intracellular calcium ions (Ca) and mitochondrial membrane potential (MMP), which indicated that strobilurins could cause mitochondrial dysfunction and cell apoptosis. The present study was performed a systematic analysis of strobilurins to zebrafish at multi-levels, which provided suggestions for further investigation of molecular mechanisms underlying the toxicity induced by strobilurins on aquatic organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2019.07.081 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!