A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The calcium-activated protease calpain regulates netrin-1 receptor deleted in colorectal cancer-induced axon outgrowth in cortical neurons. | LitMetric

During development, neurons extend axons toward their appropriate synaptic targets to establish functional neuronal connections. The growth cone, a highly motile structure at the tip of the axon, is capable of recognizing extracellular guidance cues and translating them into directed axon outgrowth through modulation of the actin cytoskeleton. Netrin-1 mediates its attractive function through the receptor deleted in colorectal cancer (DCC) to promote axon outgrowth and guidance. The calcium-activated protease calpain is involved in the cleavage of cytoskeletal proteins, which plays an important role during adhesion turnover and cell migration. However, its function during neuronal development is less understood. Here we demonstrate that netrin-1 activated calpain in embryonic rat cortical neurons in an extracellular-regulated kinase 1/2-dependent manner. In addition, we found that netrin-1 stimulation led to an increase in calpain-1 localization in the axon, whereas its endogenous inhibitor calpastatin was decreased in the growth cones of cortical neurons by indirect immunofluorescence. Interestingly, calpain-1 was able to cleave DCC in vitro. Furthermore, netrin-1 induced the cleavage of the cytoskeletal proteins spectrin and focal adhesion kinase concomitantly with the intracellular domain of DCC in a calpain-dependent manner in embryonic rat cortical neurons. Cortical neurons over-expressing calpastatin or calpain-depleted neurons displayed increased basal axon length and were unresponsive to netrin-1 stimulation. Altogether, we propose a novel model whereby netrin-1/DCC-mediated axon outgrowth is modulated by calpain-mediated proteolysis of DCC and cytoskeletal targets in embryonic cortical neurons. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.14837DOI Listing

Publication Analysis

Top Keywords

cortical neurons
24
axon outgrowth
16
calcium-activated protease
8
protease calpain
8
receptor deleted
8
deleted colorectal
8
neurons
8
cleavage cytoskeletal
8
cytoskeletal proteins
8
embryonic rat
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!