AI Article Synopsis

Article Abstract

We sought to validate new couch modeling optimization for tomotherapy planning and delivery. We constructed simplified virtual structures just above a default setting couch through a planning support system (MIM Maestro, version 8.2, MIM Software Inc, Cleveland, OH, USA). Based on ionization chamber measurements, we performed interactive optimization and determined the most appropriate physical density of these virtual structures in a treatment planning system (TPS). To validate this couch optimization, Gamma analysis and these statistical analyses between a three-dimensional diode array QA system (ArcCHECK, Sun Nuclear, Melbourne, FL, USA) results and calculations from ionization chamber measurements were performed at 3%/2 mm criteria with a threshold of 10% in clinical QA plans. Using a virtual model consisting of a center slab density of 4.2 g/cm and both side slabs density of 1.9 g/cm , we demonstrated close agreement between measured dose and the TPS calculated dose. Agreement was within 1% for all gantry angles at the isocenter and within 2% in off-axis plans. In validation of the couch modeling in a clinical QA plan, the average gamma passing rate improved approximately 0.6%-5.1%. It was statistically significant (P < 0.05) for all treatment sites. We successfully generated an accurate couch model for a TomoTherapy TPS by interactively optimizing the physical density of the couch using a planning support system. This modeling proved to be an efficient way of correcting the dosimetric effects of the treatment couch in tomotherapy planning and delivery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698767PMC
http://dx.doi.org/10.1002/acm2.12686DOI Listing

Publication Analysis

Top Keywords

couch modeling
12
modeling optimization
8
optimization tomotherapy
8
tomotherapy planning
8
planning delivery
8
validate couch
8
virtual structures
8
ionization chamber
8
chamber measurements
8
measurements performed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!