High density cell seeding affects the rheology and printability of collagen bioinks.

Biofabrication

Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America.

Published: August 2019

An advantage of bioprinting is the ability to incorporate cells into the hydrogel bioink allowing for precise control over cell placement within a construct. Previous work found that the printability of collagen bioinks is highly dependent on their rheological properties. The effect of cell density on collagen rheological properties and, therefore, printability has not been assessed. Therefore, the objective of this study was to determine the effects of incorporating cells on the rheology and printability of collagen bioinks. Primary chondrocytes, at densities relevant to cartilage tissue engineering (up to 100 × 10 cells ml), were incorporated into 8 mg ml collagen bioinks. Bioink rheological properties before, during, and after gelation as well as printability were assessed. Cell-laden printed constructs were also cultured for up to 14 d to assess longer-term cell behavior. The addition of cells resulted in an increase in the storage modulus and viscosity of the collagen before gelation. However, the storage modulus after gelation and the rate of gelation decreased with increasing cell density. Theoretical models were compared to the rheological data to suggest frameworks that could be used to predict the rheological properties of cell-laden bioinks. Printability testing showed that improved printability could be achieved with higher cell densities. Fourteen-day culture studies showed that the printing process had no adverse effects on the viability or function of printed cells. Overall, this study shows that collagen bioinks are conducive to bioprinting with a wide range of cell densities while maintaining high printability and chondrocyte viability and function.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1758-5090/ab3524DOI Listing

Publication Analysis

Top Keywords

collagen bioinks
20
rheological properties
16
printability collagen
12
printability
8
rheology printability
8
cell density
8
printability assessed
8
storage modulus
8
cell densities
8
viability function
8

Similar Publications

Y-27632 and dual media culture approach promote the construction and transplantation of rabbit limbal epithelial cell sheets via cell spheroid culture and auto-bioprinting.

Acta Biomater

January 2025

Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China; Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China; Aier School of Ophthalmology, Central South University, Changsha, China. Electronic address:

The shortage of corneal donors and the limitations in tissue engineering grafts, such as biocompatibility and mechanical properties, pose significant challenges in corneal transplantation. Here, for the first time, we investigate the effect of Rho kinase inhibitor Y-27632 and a dual media culture approach, including proliferative media (M1) and stabilizing media (M2), on rabbit limbal epithelial stem cells (LESCs), aiming to explore the feasibility of constructing corneal cell sheets in vitro through auto-bioprinting and assessing their corneal wound healing capacity in vivo. Y-27632 has primarily demonstrated significantly enhanced LESCs growth, proliferation, and reduced apoptosis.

View Article and Find Full Text PDF

Collagen as a bio-ink for 3D printing: a critical review.

J Mater Chem B

January 2025

Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK.

The significance of three-dimensional (3D) bioprinting in the domain of regenerative medicine and tissue engineering is readily apparent. To create a multi-functional bioinspired structure, 3D bioprinting requires high-performance bioinks. Bio-inks refer to substances that encapsulate viable cells and are employed in the printing procedure to construct 3D objects progressive through successive layers.

View Article and Find Full Text PDF

Biofabrication of anisotropic articular cartilage based on decellularized extracellular matrix.

Biofabrication

January 2025

Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland.

Tissue-engineered grafts that mimic articular cartilage show promise for treating cartilage injuries. However, engineering cartilage cell-based therapies to match zonal architecture and biochemical composition remains challenging. Decellularized articular cartilage extracellular matrix (dECM) has gained attention for its chondro-inductive properties, yet dECM-based bioinks have limitations in mechanical stability and printability.

View Article and Find Full Text PDF

Traditional tissue engineering strategies focus on geometrically static tissue scaffolds, lacking the dynamic capability found in native tissues. The emerging field of 4D bioprinting offers a promising method to address this challenge. However, the requirement for consistent exogenous supplementation of growth factors (GFs) during tissue maturation poses a significant obstacle for in vivo application of 4D bioprinted constructs.

View Article and Find Full Text PDF

Innovative Ink-Based 3D Hydrogel Bioprinted Formulations for Tissue Engineering Applications.

Gels

December 2024

Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.

Three-dimensional (3D) models with improved biomimicry are essential to reduce animal experimentation and drive innovation in tissue engineering. In this study, we investigate the use of alginate-based materials as polymeric inks for 3D bioprinting of osteogenic models using human bone marrow stem/stromal cells (hBMSCs). A composite bioink incorporating alginate, nano-hydroxyapatite (nHA), type I collagen (Col) and hBMSCs was developed and for extrusion-based printing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!