A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionm1rqeh2bl490alde0pbj5onmsrqb4do0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Osteogenic differentiation of mesenchymal stem cells on random and aligned PAN/PPy nanofibrous scaffolds. | LitMetric

Download full-text PDF

Source
http://dx.doi.org/10.1177/0885328219865068DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
4
differentiation mesenchymal
4
mesenchymal stem
4
stem cells
4
cells random
4
random aligned
4
aligned pan/ppy
4
pan/ppy nanofibrous
4
nanofibrous scaffolds
4
osteogenic
1

Similar Publications

An electrostatic encapsulation strategy to motivate 3D-printed polyelectrolyte scaffolds for repair of osteoporotic bone defects.

Bioact Mater

April 2025

Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China.

Repair of osteoporotic bone defects (OBD) remains a clinical challenge due to dysregulated bone homeostasis, characterized by impaired osteogenesis and excessive osteoclast activity. While drug-loaded 3D-printed scaffolds hold great potential in the restoration of bone homeostasis for enhanced OBD repair, achieving the controlled release and targeted delivery of drugs in a 3D-printed scaffold is still unmet. Herein, we developed an electrostatic encapsulation strategy to motivate 3D-printed polyelectrolyte scaffolds (APS@P) with bone-targeting liposome formulation of salvianolic acid B (SAB-BTL).

View Article and Find Full Text PDF

Trimethylamine-N-oxide accelerates osteoporosis by PERK activation of ATF5 unfolding.

Cell Mol Life Sci

December 2024

Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.

Imbalances in gut microbiota and their metabolites have been implicated in osteoporotic disorders. Trimethylamine-n-oxide (TMAO), a metabolite of L-carnitine produced by gut microorganisms and flavin-containing monooxygenase-3, is known to accelerate tissue metabolism and remodeling; however, its role in bone loss remained unexplored. This study investigates the relationship between gut microbiota dysbiosis, TMAO production, and osteoporosis development.

View Article and Find Full Text PDF

FDA-approved polypeptide PTH 1-34 impedes palmitic acid-mediated osteoblasts dysfunction by promoting its differentiation and thereby improving skeletal health.

Mol Cell Endocrinol

December 2024

Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India. Electronic address:

Excessive consumption of saturated fatty acids creates a debilitating cellular environment that hinders the normal function and survival of osteoblasts, contributing to bone metabolic disorders such as osteoporosis. The FDA-approved polypeptide PTH 1-34 is a well-established therapy for post-menopausal osteoporosis, yet its protective effects in a palmitic acid (PA)-rich hyperlipidemic environment are not well understood. This study investigates the impact of PTH 1-34 on PA-induced cellular responses in osteoblasts.

View Article and Find Full Text PDF

A xenogenic-free culture medium for cell micro-patterning systems as cell-instructive biomaterials for potential clinical applications.

Biomed Mater

December 2024

G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis; Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Engesserstr. 4, Freiburg im Breisgau, 79108, GERMANY.

Cell micro-patterning controls cell fate and function and has potential for generating therapeutically usable mesenchymal stromal cell (MSC) populations with precise functions. However, to date, the micro-patterning of human cells in a translational context has been impossible because only ruminant media supplements, e.g.

View Article and Find Full Text PDF

Effective Bone Tissue Fabrication Using 3D-Printed Citrate-Based Nanocomposite Scaffolds Laden with BMP9-Stimulated Human Urine Stem Cells.

ACS Appl Mater Interfaces

December 2024

Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center; Chicago, Illinois 60637, United States.

Effective repair of large bone defects through bone tissue engineering (BTE) remains an unmet clinical challenge. Successful BTE requires optimal and synergistic interactions among biocompatible scaffolds, osteogenic factors, and osteoprogenitors to form a highly vascularized microenvironment for bone regeneration and osseointegration. We sought to develop a highly effective BTE system by using 3D printed citrate-based mPOC/hydroxyapatite (HA) composites laden with BMP9-stimulated human urine stem cells (USCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!