Statins are used extensively for the clinical treatment of cardiovascular diseases. Recent studies suggest that statins increase the risk of new-onset diabetes mellitus (NODM). However, the mechanisms of statin-induced NODM remain unclear. The present study investigated the effects of autophagy on insulin secretion impairment induced by rosuvastatin (RS) in rat insulinoma cells (INS-1E) cells. INS-1E cells were cultured and treated with RS at different concentrations (0.2-20 μM) for 24 h. Insulin secretion in INS-1E cells was detected by enzyme-linked immunosorbent assay, and the co-localization of microtubule-associated protein light chain 3 (LC3) and lysosome-associated membrane protein 2 (LAMP-2) was observed by immunofluorescence staining. Western blotting was used to assess the conversion of LC3 and p62. The results showed that the insulin secretion and cell viability decrease induced by RS treatment for 24 h occurred in a dose-dependent manner in INS-1E cells. RS significantly inhibited the expression of LC3-II but increased the protein expression of p62. Simultaneously, RS diminished the co-localization of LC3-II and LAMP-2 fluorescence signals. These results suggested that RS-inhibited autophagy in INS-1E cells. Rapamycin, an autophagy agonist, reversed the insulin secretion and cell viability suppression induced by RS in INS-1E cells. RS also decreased the phosphorylation of the mammalian target of rapamycin (mTOR). The results indicated that RS impairs insulin secretion in INS-1E cells, which may be partly due to the inhibition of autophagy via an mTOR-dependent pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbin.11208 | DOI Listing |
Life Sci
January 2025
Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina; Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina. Electronic address:
Aims: Type 2 diabetes (T2D) is a prevalent metabolic disease linked to obesity and metabolic syndrome (MS). The glucolipotoxic environment (GLT) impacts tissues causing low-grade inflammation, insulin resistance and the gradual loss of pancreatic β-cell function, leading to hyperglycemia. We have previously shown that Compound A (CpdA), a plant-derived dissociative glucocorticoid receptor-modulator with inflammation-suppressive activity, displays protective effects on β-cells in type 1 diabetes murine models.
View Article and Find Full Text PDFJ Gastroenterol
January 2025
Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
Cells
November 2024
Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine of the Slovak Academy of Sciences, 841 04 Bratislava, Slovakia.
Sarco/endoplasmic reticulum Ca-ATPase (SERCA) is an important regulatory protein responsible for maintaining calcium homeostasis within cells. Impairment of SERCA associated with activity/expression decrease has been implicated in multiple chronic conditions, including cardiovascular diseases, diabetes, cancer, neurodegenerative diseases, and skeletal muscle pathologies. Natural polyphenols have been recognized to interact with several target proteins involving SERCA.
View Article and Find Full Text PDFFEBS J
January 2025
Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
Type 1 diabetes (T1D) is characterized by immune cell infiltration in the islets of Langerhans, leading to the destruction of insulin-producing beta cells. This destruction is driven by secreted cytokines and cytotoxic T cells inducing apoptosis in beta cells. Butyrate, a metabolite produced by the gut microbiota, has been shown to have various health benefits, including anti-inflammatory and anti-diabetic effects.
View Article and Find Full Text PDFPLoS One
November 2024
Department of Experimental Medical Sciences, Unit of Medical Protein Science, Lund University, Lund, Sweden.
Apolipoprotein A-I (ApoA-I), the primary component of high-density lipoprotein (HDL) cholesterol primes β-cells to increase insulin secretion, however, the mechanisms involved are not fully defined. Here, we aimed to confirm ApoA-I receptors in β-cells and delineate ApoA-I-receptor pathways in β-cell insulin output. An LRC-TriCEPS experiment was performed using the INS-1E rat β-cell model and ApoA-I for unbiased identification of ApoA-I receptors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!