Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The mating system is a central parameter of plant biology because it shapes their ecological and evolutionary properties. Therefore, determining ecological variables that influence the mating system is important for a deeper understanding of the functioning of plant populations. Here, using old concepts and recent statistical developments, we propose a new statistical tool to make inferences about ecological determinants of outcrossing in natural plant populations. The method requires codominant genotypes of seeds collected from maternal plants within different locations. Using extensive computer simulations, we demonstrated that the method is robust to the issues expected for real-world data, including the Wahlund effect, inbreeding and genotyping errors such as allele dropout and allele misclassification. Furthermore, we showed that the estimates of ecological effects and outcrossing rates can be severely biased if genotyping errors and genetic differentiation are not treated explicitly. Application of the new method to the case study of a dioecious tree (Taxus baccata) allowed revealing that female trees that grow in lower local densities have a greater tendency towards mating with relatives. Moreover, we also demonstrated that biparental inbreeding is higher in populations that are characterized by a longer mean distance between trees and a smaller mean trunk perimeter. We found these results to agree with both the theoretical predictions and the history of English yew.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mec.15195 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!