Background: Pathological response to neoadjuvant chemotherapy (NAC) is critical in prognosis and selection of systemic treatments for patients with triple-negative breast cancer (TNBC). The aim of this study is to identify gene expression-based markers to predict response to NAC.
Patients And Methods: A survey of 43 publicly available gene expression datasets was performed. We identified a cohort of TNBC patients treated with NAC (n = 708). Gene expression data from different studies were renormalized, and the differences between pretreatment (pre-NAC), on-treatment (post-C1), and surgical (Sx) specimens were evaluated. Euclidean statistical distances were calculated to estimate changes in gene expression patterns induced by NAC. Hierarchical clustering and pathway enrichment analyses were used to characterize relationships between differentially expressed genes and affected gene pathways. Machine learning was employed to refine a gene expression signature with the potential to predict response to NAC.
Results: Forty nine genes consistently affected by NAC were involved in enhanced regulation of wound response, chemokine release, cell division, and decreased programmed cell death in residual invasive disease. The statistical distances between pre-NAC and post-C1 significantly predicted pathological complete response [area under the curve (AUC) = 0.75; p = 0.003; 95% confidence interval (CI) 0.58-0.92]. Finally, the expression of CCND1, a cyclin that forms complexes with CDK4/6 to promote the cell cycle, was the most informative feature in pre-NAC biopsies to predict response to NAC.
Conclusions: The results of this study reveal significant transcriptomic changes induced by NAC and suggest that chemotherapy-induced gene expression changes observed early in therapy may be good predictors of response to NAC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1245/s10434-019-07567-6 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.
Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.
Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.
Front Biosci (Landmark Ed)
January 2025
Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, 214400 Jiangyin, Jiangsu, China.
Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.
Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.
Front Biosci (Landmark Ed)
January 2025
Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Würzburg, Germany.
Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.
Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.
View Article and Find Full Text PDFPharm Biol
December 2025
The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China.
Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.
Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!