The physical and mechanical properties of the dielectric materials mainly depend on shapes of particles in granular media. In order to reveal the differences of physical and mechanical properties between tailings and natural sands from the microscopic view, the usage of digital image processing techniques contributes to the quantification of shape descriptors (elongation, sphericity, convexity, and roughness) describing the shapes of particles. The comparison between four tailings (gold, tin, copper, and iron) and two natural sands (river sand and sea sand) is made in the current study. Results show that particle shape descriptors have great relationship with particle size. The decrement of particle size, on one hand, leads to the increase of the elongation of tailings and sea sand, and thus forming the needle-like or columnar shape of particles. The sphericity of tailings and river sand also increases and generates spherical shapes of particles. On the other hand, both of the convexity and roughness of tailings and sea sand grow with larger particle size. The remarkable difference can be observed on surface texture of particles between tailings and sea sand. Much higher angularity of tailings is also represented by comparing with that of sea sand and river sand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-019-05974-6 | DOI Listing |
Ecol Evol
January 2025
Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences Hainan Normal University Haikou China.
The green sea turtle () is the only sea turtle species that breeds in China, and the largest remaining nesting grounds for green sea turtles in Chinese waters is found on the Qilianyu atoll of the Xisha Islands. Nesting site selection is particularly important for egg survival, and understanding the microhabitat characteristics of green sea turtle nesting sites is crucial for delineating priority conservation areas for nesting grounds. In this study, we aimed to examine the role of several microhabitat ecological factors in the selection of nesting sites and the success of nesting.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China.
Nitrification, the oxidation of ammonium to nitrate via nitrite, links nitrogen fixation and nitrogen loss processes, playing key roles in coastal nitrogen cycle. However, few studies have simultaneously examined both ammonia-oxidizing and nitrite-oxidizing microbes. This work investigated the abundance and community structure of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (NOB) using archaeal amoA gene, bacterial amoA gene, and NOB nxrB gene, respectively, through q-PCR and Sanger sequencing along the Changjiang Estuary salinity gradient.
View Article and Find Full Text PDFPLoS One
January 2025
Wildlife Research Division, Institute of Ocean Sciences, Environment and Climate Change Canada, Integrated Marine Spatial Ecology Lab, Sidney, British Columbia, Canada.
The marbled murrelet (Brachyramphus marmoratus) is a small seabird inhabiting coastal regions along the Pacific coast of North America, and nests in old-growth forests usually within 80 km from shore. The Canadian population of marbled murrelets is listed as Threatened under the federal Species at Risk Act. To investigate the species' marine distribution, we conducted analyses of the occurrence of marbled murrelets at-sea between 2000 and 2022, utilizing at-sea and marine shoreline surveys in the Canadian portion of the Salish Sea.
View Article and Find Full Text PDFJ Lesbian Stud
January 2025
Brown University, Department of Modern Culture & Media.
In this short piece I think about the ocean as queer and its liberating sensualities as a practice of writing into the surf. What are the dissolutions that emerge from the wetness of the sea? This piece is based on forthcoming work where I expand upon the themes of queer and trans ecologies at the sea's edge.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Civil and Environmental Engineering, Gangneung-Wonju National University, Gangneung, Gangwon-do, 25457, South Korea. Electronic address:
Coastal areas undergo continuous transformations, altering their geometry under the influence of external forces like tides, waves, and extreme events. Thus, monitoring the impact of extreme weather events on coastal regions is crucial to prevent potential cascading hazards. Here, we utilized time-series optical and SAR satellite data and tide records, coupled with sophisticated analytical techniques, to analyze erosion processes, sediment transport, and vertical land movement (VLM) at an embayed sandy beach (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!