A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Minimizing aerosol bone dust during autopsies. | LitMetric

Minimizing aerosol bone dust during autopsies.

Forensic Sci Med Pathol

Department of Forensic Anthropology, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497GB, The Hague, Netherlands.

Published: September 2019

When sawing bone for medical or medico-legal procedures, fine, airborne dust is produced (aerosols) that can pose a health hazard when inhaled. The aim of this study was to determine the influence of saw blade frequency and contact load, bone condition, test environment, and saw blade type, on the production of aerosol particles. A custom test setup was designed, manufactured and used in 8 bone sawing experiments, using a particle counter to determine the production of aerosol particles while varying the 5 chosen parameters. The number of counted particles was highest with higher saw blade frequencies, lower saw blade contact loads, in dry completely skeletonized bone compared to fresh bone, and using an electrical oscillating saw compared to hand-sawing. Under all conditions, the high amount of aerosol counted posed potential health risks. The ventilation system that we tested was adequate in removing the produced particles, but these high-tech systems are not always available in developing countries or emergency situations. The production of aerosols can be reduced by optimizing the sawing parameters. However, even the lowest number of aerosol particles counted during the current study was high enough to cause potential health risks to practitioners. Safety precautions should be taken, such as external ventilation, proper breathing gear, and adequate protocols, to truly minimize the risk in all bone sawing scenarios.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7090790PMC
http://dx.doi.org/10.1007/s12024-019-00141-2DOI Listing

Publication Analysis

Top Keywords

aerosol particles
12
production aerosol
8
bone sawing
8
potential health
8
health risks
8
bone
7
particles
5
minimizing aerosol
4
aerosol bone
4
bone dust
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!