Investigation of antioxidative effects of a cardioprotective solution in heart tissue.

Mol Cell Biochem

Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Schubertstraße 1, 8010, Graz, Austria.

Published: November 2019

A multi-component solution, containing α-ketoglutaric acid (α-KG), 5-hydroxymethylfurfural (5-HMF), N-acetyl-seleno-L-methionine (NASeLM), and N-acetyl-L-methionine (NALM) as active ingredients, has been tested considering its supposed antioxidative effect with respect to heart transplantations. Oxidative stress was induced on isolated rat hearts through occlusion of a coronary artery and in chicken heart tissue through hydrogen peroxide. Both heart types were analyzed and the oxidative stress markers malondialdehyde (MDA) and carbonyl proteins (CPs) were determined via HPLC/UV-Vis. In both approaches, it was found that treatment with the multi-component solution led to a lower amount of MDA and CPs compared to a negative control treated with Krebs-Ringer solution (KRS). Further investigation on chicken heart tissue identified α-KG as antioxidative component in these experiments. However, numerous factors like arrhythmia, vessel dilatation, and minimization of oxidative stress effects play an important role for successful transplantation. Therefore, the investigated multi-component solution might be a novel approach against oxidative stress situations, for example at ischemia reperfusion injury during heart transplantations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6790185PMC
http://dx.doi.org/10.1007/s11010-019-03591-yDOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
heart tissue
12
multi-component solution
12
heart transplantations
8
chicken heart
8
heart
6
solution
5
investigation antioxidative
4
antioxidative effects
4
effects cardioprotective
4

Similar Publications

Background: Amiodarone, a common antiarrhythmic drug, is known for its severe side effects, including pulmonary toxicity, which involves oxidative stress and apoptosis. Artemisinin, an antimalarial drug, has shown cytoprotective properties by inhibiting oxidative stress and apoptosis. This study investigated the protective effects of artemisinin against amiodarone-induced toxicity in human bronchial epithelial cells (BEAS-2B) and mouse models.

View Article and Find Full Text PDF

Radioactive brain injury, a severe complication ensuing from radiotherapy for head and neck malignancies, frequently manifests as cognitive impairment and substantially diminishes patients' quality of life. Despite its profound impact, the pathogenesis of this condition remains inadequately elucidated, and efficacious treatments are notably absent in clinical practice. Consequently, contemporary interventions predominantly focus on symptom alleviation rather than achieving a radical cure or reversing the injury process.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is the major cause of chronic liver disease worldwide, with no universally recognized effective treatments currently available. In recent years, ginseng and its principal active components, such as ginsenosides, have shown potential protective effects in the treatment of these liver diseases. In NAFLD, studies have demonstrated that ginseng can improve hepatic lipid metabolism, reduce inflammatory responses, and inhibit oxidative stress and fibrosis, thereby attenuating the progression of NAFLD.

View Article and Find Full Text PDF

Amplified by the decline in antibiotic discovery, the rise of antibiotic resistance has become a significant global challenge in infectious disease control. Extraintestinal (ExPEC), known to be the most common instigators of urinary tract infections (UTIs), represent such global threat. Novel strategies for more efficient treatments are therefore desperately needed.

View Article and Find Full Text PDF

Unlabelled: Alzheimer's disease (AD) is a progressive neurological condition that causes brain shrinkage and cell death. This study aimed to identify the role of the NORAD/miR-26b-5p axis in AD. StarBase was used to examine the binding sequences of miR-26b-5p to LncRNA NORAD or its target genes, which were verified by a double luciferase reporter assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!