A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Supercell calculations of the geometry and lattice energy of α-glycine crystal. | LitMetric

Supercell calculations of the geometry and lattice energy of α-glycine crystal.

J Mol Model

Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23890-000, Brazil.

Published: July 2019

Evidence about the presence of glycine in the interstellar medium (ISM) has been motivating studies aiming the understanding of the chemical behavior of this amino acid in such environment. Since glycine is expected to be predominantly found in the ISM in solid phase, this work focuses on the search for a theoretical methodology for obtaining a molecular cluster for α-glycine that provides a good description of the geometry of the unit cell and lattice energy. Calculations have been performed using the B3LYP-D3, PBE0-D3, and WB97X-D3 functionals, with def2-SVP, def2-TZVP, def2-TZVPP, and def2-QZVPP basis sets for two models: (a) the unit cell, containing 4 glycine units, and (b) the 2 × 1 × 2 expanded cell, with 16 glycine units. Corrections for the basis set superposition error have also been applied. No significant changes in geometries and lattice energy predictions from the different functionals and basis sets have been observed for each model. Nevertheless, results obtained for the larger molecular cluster are in better agreement with the experimental data. The best lattice energy prediction, obtained for the 2 × 1 × 2 supercell at the B3LYP-gCP-D3/def2-TZVPP level, is - 15.35 kcal mol, with a root mean square deviation of the predicted Cartesian coordinates of the inner molecules (with respect to the experimental α-glycine unit cell geometry) of 0.966 Å. This methodology is finally recommended for future studies of similar molecular cluster, and the predicted geometry is proposed for further studies aiming to describe glycine surface reactions in the ISM.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-019-4124-2DOI Listing

Publication Analysis

Top Keywords

lattice energy
16
molecular cluster
12
unit cell
12
studies aiming
8
basis sets
8
cell glycine
8
glycine units
8
glycine
5
supercell calculations
4
geometry
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!