Lipid metabolism impairment in patients with sepsis secondary to hospital acquired pneumonia, a proteomic analysis.

Clin Proteomics

1Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 10th Floor, Sao Paulo, SP 04039-032 Brazil.

Published: July 2019

Background: Sepsis is a dysregulated host response to infection and a major cause of death worldwide. Respiratory tract infections account for most sepsis cases and depending on the place of acquisition, i.e., community or hospital acquired infection, differ in etiology, antimicrobial resistance and outcomes. Accordingly, the host response may be different in septic patients secondary to community-acquired pneumonia and hospital acquired pneumonia (HAP). Proteomic analysis is a useful approach to evaluate broad alterations in biological pathways that take place during sepsis. Here we evaluated plasma proteome changes in sepsis secondary to HAP.

Methods: Plasma samples were obtained from patients (n = 27) at admission and after 7 days of follow-up, and were analyzed according to the patients' outcomes. The patients' proteome profiles were compared with healthy volunteers (n = 23). Pooled plasma samples were labeled with isobaric tag for relative and absolute quantitationand analyzed by LC-MS/MS. We used bioinformatics tools to find altered functions and pathways. Results were validated using biochemical estimations and ELISA tests.

Results: We identified 159 altered proteins in septic patients; most of them were common when comparing patients' outcomes, both at admission and after 7 days. The top altered biological processes were acute inflammatory response, response to wounding, blood coagulation and homeostasis. Lipid metabolism emerged as the main altered function in patients, with HDL as a central node in the network analysis, interacting with downregulated proteins, such as APOA4, APOB, APOC1, APOL1, SAA4 and PON1. Validation tests showed reduced plasma levels of total cholesterol, HDL-C, LDL-C, non-HDL cholesterol, apolipoproteins ApoA1 and ApoB100, and Paraoxonase 1 in HAP patients.

Conclusion: Proteomic analysis pointed to impairment of lipid metabolism as a major change in septic patients secondary to HAP, which was further validated by the reduced levels of cholesterol moieties and apolipoproteins in plasma. Our results stress the involvement of lipids in the pathogenesis of sepsis, which is in accordance with previous reports supporting the role of lipid moieties in pathogen toxin clearance and in modulating inflammatory responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6631513PMC
http://dx.doi.org/10.1186/s12014-019-9252-2DOI Listing

Publication Analysis

Top Keywords

lipid metabolism
12
hospital acquired
12
proteomic analysis
12
septic patients
12
sepsis secondary
8
acquired pneumonia
8
host response
8
patients secondary
8
plasma samples
8
admission 7 days
8

Similar Publications

To determine the basis for perinatal nutritional mismatch causing metabolic dysfunction associated steatotic liver disease (MASLD) and diabetes mellitus, we examined adult phenotype, hepatic transcriptome, and pancreatic β-islet function. In prenatal caloric restricted rat with intrauterine growth restriction (IUGR) and postnatal exposure to high fat with fructose (HFhf) or high carbohydrate (RC), we investigated male and female IUGR-Hfhf and IUGR-RC, versus HFhf and CON offspring. Males more than females displayed adiposity, glucose intolerance, insulin resistance, hyperlipidemia, hepatomegaly with hepatic steatosis.

View Article and Find Full Text PDF

Nb-FAR-1: A key developmental protein affects lipid droplet accumulation and cuticle formation in Nippostrongylus brasiliensis.

PLoS Negl Trop Dis

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.

Fatty acid and retinol binding proteins (FARs) are lipid-binding protein that may be associated with modulating nematode pathogenicity to their hosts. However, the functional mechanism of FARs remains elusive. We attempt to study the function of a certain FAR that may be important in the development of Nippostrongylus brasiliensis.

View Article and Find Full Text PDF

An experiment was conducted to assess the effects of the BCAA and their interactions on performance, carcass composition, lipid metabolism, liver health, and intestinal morphometry in broiler chickens. Male chickens ( = 1080) were randomly assigned into floor pens in a 3 × 3 factorial design with 3 dietary ratios of SID Leu:Lys (110, 150, and 190%), and 3 dietary ratios of SID Ile-Val:Lys (68-77, 78-87, and 88-97%). Performance parameters were assessed from 1 to 35 days of age.

View Article and Find Full Text PDF

Nutrient deprivation is a major trigger of autophagy, a conserved quality control and recycling process essential for cellular and tissue homeostasis. In a high-content image-based screen of the human ubiquitome, we here identify the E3 ligase Pellino 3 (PELI3) as a crucial regulator of starvation-induced autophagy. Mechanistically, PELI3 localizes to autophagic membranes, where it interacts with the ATG8 proteins through an LC3-interacting region (LIR).

View Article and Find Full Text PDF

Certain coral individuals exhibit enhanced resistance to thermal bleaching, yet the specific microbial assemblages and their roles in these phenotypes remain unclear. We compared the microbial communities of thermal bleaching-resistant (TBR) and thermal bleaching-sensitive (TBS) corals using metabarcoding and metagenomics. Our multidomain approach revealed stable distinct microbial compositions between thermal phenotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!