Bone fractures are very common, and above 5% of the fractures are impaired, leading to nonunions and severe disablilities. The traditional Chinese medicine Bushen Huoxue decoction (BHD) has been used to treat fracture in China. Our previous report has found that BHD promotes migration of rat mesenchymal stem cells (rMSCs) by activating Wnt5a signaling pathway. However, whether and how miRNAs are involved in modulating rMSCs migration induced by BHD has not been explored. In the present study, miRNA microarray analysis and further validation by real-time quantitative RT-PCR revealed that miR-539-5p was down-regulated in BHD-induced rMSCs. Transfection of miR-539-5p mimics suppressed rMSCs migration while the miR-539-5p inhibitor promoted rMSCs migration. Our results suggested that miR-539-5p was a negative regulator of migration of rMSCs induced by BHD. Target prediction analysis tools and Dual-luciferase reporter gene assay identified Wnt5a as a direct target of miR-539-5p. MiR-539-5p inhibited the expression of the Wnt5a and its downstream signaling molecules including JNK, PKC and CaMKII, which played a critical role in regulating migration of rMSCs. Taken together, our results demonstrate that miR-539-5p negatively regulates migration of rMSCs induced by BHD through targeting Wnt5a. These findings provide evidence that miR-539-5p should be considered as an important candidate target for the development of preventive or therapeutic approaches against bone nonunions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6643123PMC
http://dx.doi.org/10.7150/ijms.33437DOI Listing

Publication Analysis

Top Keywords

migration rmscs
16
rmscs induced
12
rmscs migration
12
induced bhd
12
mir-539-5p
9
rmscs
9
mir-539-5p negatively
8
negatively regulates
8
migration
8
regulates migration
8

Similar Publications

Microfluidic 3D platform to evaluate endothelial progenitor cell recruitment by bioactive materials.

Acta Biomater

October 2022

Electronics and Biomedical Engineering, Universitat de Barcelona (UB), Barcelona 08028, Spain; Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona 08028, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain; Institute of Nanoscience and Nanotechnology, Universitat de Barcelona (UB), Barcelona 08028, Spain. Electronic address:

Most of the conventional in vitro models to test biomaterial-driven vascularization are too simplistic to recapitulate the complex interactions taking place in the actual cell microenvironment, which results in a poor prediction of the in vivo performance of the material. However, during the last decade, cell culture models based on microfluidic technology have allowed attaining unprecedented levels of tissue biomimicry. In this work, we propose a microfluidic-based 3D model to evaluate the effect of bioactive biomaterials capable of releasing signaling cues (such as ions or proteins) in the recruitment of endogenous endothelial progenitor cells, a key step in the vascularization process.

View Article and Find Full Text PDF

Purpose: Stem cell therapy for ischemic stroke has shown success in experimental settings, but its translation into clinical practice is challenging. The choroid plexus (CP) plays a regulatory role in neural regeneration. Mesenchymal stem cells (MSCs) promote neurogenesis in the ventricular-subventricular zone.

View Article and Find Full Text PDF

Effects of Microstripe Geometry on Guided Cell Migration.

ACS Appl Mater Interfaces

June 2020

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.

Cell migration on material surfaces is a fundament issue in the fields of biomaterials, cell biology, tissue engineering, regenerative medicine, etc. Herein, we aim to guide cell migration by flat microstripes with significant contrast of cell adhesion and varied geometric features of the adhesive stripes. To this end, we designed and fabricated cell-adhesive arginine-glycine-aspartate (RGD) microstripes on the nonfouling poly(ethylene glycol) (PEG) background and examined the microstripe-guided adhesion and migration of a few cell types.

View Article and Find Full Text PDF

Activation of BK Channel Contributes to PL-Induced Mesenchymal Stem Cell Migration.

Front Physiol

March 2020

Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.

Due to their capacity to proliferate, migrate, and differentiate, mesenchymal stem cells (MSCs) are considered to be good candidates for regenerative medicine applications. The mechanisms underlying proliferation and differentiation of MSCs have been studied. However, much less is known about the mechanisms regulating the migration of MSCs.

View Article and Find Full Text PDF

Mounting evidences have indicated that terminal differentiation-induced lncRNA (TINCR) contributes to various cellular processes, such as proliferation, apoptosis, autophagy, migration, invasion, and metastasis. However, the function of TINCR in regulating migration of MSCs is largely unknown. In this study, the effects of TINCR on the migration of rat MSCs from the bone marrow were studied by Transwell assays and wound healing assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!