Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cover's celebrated theorem states that the long-run yield of a properly chosen "universal" portfolio is almost as good as that of the best constant rebalanced portfolio. The "universality" refers to the fact that this result is , that is, not dependent on an underlying stochastic process. We extend Cover's theorem to the setting of stochastic portfolio theory: the market portfolio is taken as the numéraire, and the rebalancing rule need not be constant anymore but may depend on the current state of the stock market. By fixing a stochastic model of the stock market this model-free result is complemented by a comparison with the numéraire portfolio. Roughly speaking, under appropriate assumptions the asymptotic growth rate coincides for the three approaches mentioned in the title of this paper. We present results in both discrete and continuous time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618251 | PMC |
http://dx.doi.org/10.1111/mafi.12201 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!