The contribution of spatial mass effects to plant diversity in arable fields.

J Appl Ecol

Sustainable Agricultural Sciences Rothamsted Research Harpenden Hertfordshire UK.

Published: July 2019

In arable fields, plant species richness consistently increases at field edges. This potentially makes the field edge an important habitat for the conservation of the ruderal arable flora (or 'weeds') and the invertebrates and birds it supports. Increased diversity and abundance of weeds in crop edges could be owing to either a reduction in agricultural inputs towards the field edge and/or spatial mass effects associated with dispersal from the surrounding landscape.We contend that the diversity of weed species in an arable field is a combination of species, that can persist under the intense selection pressure of regular cultivation and agrochemical inputs (typically more ruderal species), and species that rely on regular dispersal from neighbouring habitats (characterised by a more 'competitive' ecological strategy).We analysed a large dataset of conventionally managed arable fields in the UK to study the effect of the immediate landscape on in-field plant diversity and abundance and to quantify the contribution of spatial mass effects to plant diversity in arable fields in the context of the ecological strategy of the resulting community.We demonstrated that the decline in diversity with distance into an arable field is highly dependent on the immediate landscape, indicating the important role of spatial mass effects in explaining the increased species richness at field edges in conventionally managed fields.We observed an increase in the proportion of typical arable weeds away from the field edge towards the centre. This increase was dependent on the immediate landscape and was associated with a higher proportion of more competitive species, with a lower fidelity to arable habitats, at the field edge. . Conserving the ruderal arable plant community, and the invertebrates and birds that use it as a resource, in conventionally managed arable fields typically relies on the targeted reduction of fertilisers and herbicides in so-called 'conservation headlands'. The success of these options will depend on the neighbouring habitat and boundary. They should be placed along margins where the potential for ingress of competitive species, that may become dominant in the absence of herbicides, is limited. This will enhance ecosystem services delivered by the ruderal flora and reduce the risk of competitive species occurring in the crop.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618144PMC
http://dx.doi.org/10.1111/1365-2664.13414DOI Listing

Publication Analysis

Top Keywords

arable fields
20
spatial mass
16
mass effects
16
field edge
16
plant diversity
12
conventionally managed
12
competitive species
12
arable
11
species
9
contribution spatial
8

Similar Publications

Phosphorus (P) is an essential yet frequently deficient plant nutrient. Optimizing P distribution and recycling between tissues is vital for improving P utilization efficiency (PUE). Yet, the mechanisms underlying the transport and re-translocation of P within plants remain unclear.

View Article and Find Full Text PDF

Heavy metal pollution in soil is a significant challenge around the world, particularly cadmium (Cd) contamination. In situ phytoextraction and remediation technology, particularly focusing on Cd hyperaccumulator plants, has proven to be an effective method for cleaning Cd-contaminated agricultural lands. However, this strategy is often hindered by a long remediation cycle and low efficiency.

View Article and Find Full Text PDF

Wheat () is grown on more arable acreage than any other food crop and has been well documented to produce allelochemicals. Wheat allelochemicals include numerous benzoxazinoids and their microbially transformed metabolites that actively suppress growth of weed seedlings. Production and subsequent release of these metabolites by commercial wheat cultivars, however, has not yet been targeted by focussed breeding programmes seeking to develop more competitive crops.

View Article and Find Full Text PDF

Conservation of bumblebee populations is essential because of their role as pollinators. Declines in bumblebee abundance have been documented in recent decades, mostly attributed to agricultural intensification, landscape simplification and loss of semi-natural grasslands. In this study, we investigated the effects of landscape composition on bumblebee abundance at different spatial scales in 476 semi-natural grassland sites in southern Sweden.

View Article and Find Full Text PDF

Long-term effect of repeated application of pig slurry digestate on microbial communities in arable soils.

Heliyon

January 2025

Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France.

Anaerobic digestion represents an opportunity for converting organic waste (OW) into valuable products: renewable energy (biogas) and a fertilizer (digestate). However, the long-term effects of digestates on soil biota, especially microorganisms, need to be better documented to understand the impact of digestate on soil ecosystem functioning and resilience. This study assessed the cumulative effect of repeated pig slurry digestate applications on soil microbial communities over a decade, using an in-situ approach to compare digested feedstock with undigested feedstock and other fertilization treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!