Integral membrane transporters of the Mycobacterial Membrane Protein Large (MmpL) family and their interactome play important roles in the synthesis and export of mycobacterial outer membrane lipids. Despite the current interest in the mycolic acid transporter, MmpL3, from the perspective of drug discovery, the nature and biological significance of its interactome remain largely unknown. We here report on a genome-wide screening by two-hybrid system for MmpL3 binding partners. While a surprisingly low number of proteins involved in mycolic acid biosynthesis was found to interact with MmpL3, numerous enzymes and transporters participating in the biogenesis of peptidoglycan, arabinogalactan and lipoglycans, and the cell division regulatory protein, CrgA, were identified among the hits. Surface plasmon resonance and co-immunoprecipitation independently confirmed physical interactions for three proteins in vitro and/or in vivo. Results are in line with the focal localization of MmpL3 at the poles and septum of actively-growing bacilli where the synthesis of all major constituents of the cell wall core are known to occur, and are further suggestive of a role for MmpL3 in the coordination of new cell wall deposition during cell septation and elongation. This novel aspect of the physiology of MmpL3 may contribute to the extreme vulnerability and high therapeutic potential of this transporter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6656915PMC
http://dx.doi.org/10.1038/s41598-019-47159-8DOI Listing

Publication Analysis

Top Keywords

mycolic acid
8
cell wall
8
mmpl3
7
cell
6
mmpl3 interactome
4
interactome reveals
4
reveals complex
4
complex crosstalk
4
crosstalk cell
4
cell envelope
4

Similar Publications

infections continue to pose a significant global health challenge, particularly due to the rise of multidrug-resistant strains, random mycobacterial mutations, and the complications associated with short-term antibiotic regimens. Currently, five approved drugs target cell wall biosynthesis in . This review provides a comprehensive analysis of these drugs and their molecular mechanisms.

View Article and Find Full Text PDF

[Engineering of CmpLs enhances L-glutamate production of ].

Sheng Wu Gong Cheng Xue Bao

January 2025

Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.

The efficient production of L-glutamate is dependent on the product's rapid efflux, hence researchers have recently concentrated on artificially modifying its transport system and cell membrane wall structure. Considering the unique composition and structure of the cell wall of , we investigated the effects of CmpLs on L-glutamate synthesis and transport in SCgGC7, a constitutive L-glutamate efflux strain. First, the knockout strains of CmpLs were constructed, and it was confirmed that the deletion of CmpL1 and CmpL4 significantly improved the performance of L-glutamate producers.

View Article and Find Full Text PDF

Tuberculosis (TB) remains a major global threat, with 10 million new cases and 1.5 million deaths each year. In multidrug-resistant tuberculosis (MDR-TB), resistance is most commonly observed against isoniazid (INH) and rifampicin (RIF), the two frontline drugs.

View Article and Find Full Text PDF

Four novel nontuberculous mycobacteria were discovered from a historical strain collection at the International Reference Laboratory of Mycobacteriology at Statens Serum Institut in Copenhagen, Denmark. Phylogenetic analysis combining the 16S , internal transcribed spacer and 23S elements, as well as a single-copy core-gene (, , and ) analysis of these freeze-dried mycobacteria, clinically isolated from gastric lavage samples between 1948 and 1955, showed to be associated with type strains grouping within the Terra and Fortuitum-Vaccae clade. Phenotypic characteristics, biochemical properties and fatty acid and mycolic acid profiles supported the classification as novel strains.

View Article and Find Full Text PDF

Manipulation and Structural Activity of AcpM in .

Biochemistry

January 2025

Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States.

(Mtb) is a leading cause of death, with an escalating global occurrence of drug-resistant infections that are partially attributed to cell wall mycolic acids derived from type II fatty acid biosynthesis (FAS-II). Here, the central acyl carrier protein, AcpM, contributes to the regulation of complex and specific protein-protein interactions (PPIs), though the orchestration of these events remain largely unresolved due to unique features of AcpM. Limitations include complexities in generating modified AcpM in a single state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!