A recently proposed oxidative damage protection mechanism in proteins relies on hole hopping escape routes formed by redox-active amino acids. We present a computational tool to identify the dominant charge hopping pathways through these residues based on the mean residence times of the transferring charge along these hopping pathways. The residence times are estimated by combining a kinetic model with well-known rate expressions for the charge-transfer steps in the pathways. We identify the most rapid hole hopping escape routes in cytochrome P450 monooxygenase, cytochrome peroxidase, and benzylsuccinate synthase (BSS). This theoretical analysis supports the existence of hole hopping chains as a mechanism capable of providing hole escape from protein catalytic sites on biologically relevant timescales. Furthermore, we find that pathways involving the [4Fe4S] cluster as the terminal hole acceptor in BSS are accessible on the millisecond timescale, suggesting a potential protective role of redox-active cofactors for preventing protein oxidative damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689991 | PMC |
http://dx.doi.org/10.1073/pnas.1906394116 | DOI Listing |
J Chem Theory Comput
January 2025
Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy.
The charge transfer (CT) reactions in nucleic acids are crucial for genome damage and repair and nanoelectronics using DNA as a molecular conductor. Previous experimental and theoretical works underlined the significance of nucleic acid structural dynamics on CT kinetics, requiring models that incorporate the dynamics of the nucleic acid, solvents, and counterions. Here, we investigated hole transfer kinetics in poly adenine single and double strands at various temperatures and the rate enhancement due to adenine-to-7-deazaadenine mutation by means of a QM/MM approach.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China.
Recently, robust d-wave superconductive (SC) order has been unveiled in the ground state of the 2D t-t^{'}-J model-with both nearest-neighbor (t) and next-nearest-neighbor (t^{'}) hoppings-by density matrix renormalization group studies. However, there is currently a debate on whether the d-wave SC holds up strong on both t^{'}/t>0 and t^{'}/t<0 cases for the t-t^{'}-J model, which correspond to the electron- and hole-doped sides of the cuprate phase diagram, respectively. Here, we exploit state-of-the-art thermal tensor network approach to accurately obtain the phase diagram of the t-t^{'}-J model on cylinders with widths up to W=6 and down to low temperature as T/J≃0.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Department of Physics (MMV), Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
We report a detailed experimental study of the structural, magnetic and electrical properties of La and Ru doped (SrLa)IrRuO(= 0.05, 0.15).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
Two-dimensional (2D) β-TeO has gained attention as a promising material for optoelectronic and power device applications, thanks to its transparency and high hole mobility. However, the mechanisms driving its -type conductivity and dopability remain elusive. In this study, we investigate the intrinsic and extrinsic point defects in monolayer and bilayer β-TeO, the latter of which has been experimentally synthesized, using the Heyd-Scuseria-Ernzerhof (HSE) + D3 hybrid functional.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Collective excitations of bound electron-hole pairs, i.e., excitons, are ubiquitous in condensed matter systems, and it has been shown that they can strongly couple to other degrees of freedom, such as spin, orbital, and lattice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!