Background: Cell-based therapies have the potential to become treatment options for many diseases, but efficient scale-out of these therapies has proven to be a major hurdle. Bioreactors can be used to overcome this hurdle, but changing the culture method can introduce unwanted changes to the cell product. Therefore, it is important to establish parity between products generated using traditional methods versus those generated using a bioreactor.

Methods: Mesenchymal stromal cells (MSCs) are cultured in parallel using either traditional culture flasks, spinner vessels or a new bioreactor system. To investigate parity between the cells obtained from different methods, harvested cells are compared in terms of yield, phenotype and functionality.

Results: Bioreactor-based expansion yielded high cell numbers (222-510 million cells). Highest cell expansion was observed upon culture in flasks [average 5.0 population doublings (PDL)], followed by bioreactor (4.0 PDL) and spinner flasks (3.3 PDL). Flow cytometry confirmed MSC identity (CD73, CD90 and CD105) and lack of contaminating hematopoietic cell populations. Cultured MSCs did not display genetic aberrations and no difference in differentiation and immunomodulatory capacity was observed between culture conditions. The response to IFNγ stimulation was similar for cells obtained from all culture conditions, as was the capacity to inhibit T cell proliferation.

Conclusions: The new bioreactor technology can be used to culture large amounts of cells with characteristics equivalent to those cultured using traditional, flask based, methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6657181PMC
http://dx.doi.org/10.1186/s12967-019-1989-xDOI Listing

Publication Analysis

Top Keywords

mesenchymal stromal
8
culture flasks
8
observed culture
8
culture conditions
8
culture
7
cell
6
cells
6
preparing cell
4
cell culture
4
culture scale-out
4

Similar Publications

Introduction: Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. Treatments for TBI patients are limited and none has been shown to provide prolonged and long-term neuroprotective or neurorestorative effects. A growing body of evidence suggests a link between TBI-induced neuro-inflammation and neurodegenerative post-traumatic disorders.

View Article and Find Full Text PDF

Inflammation and mechanical force-induced bone remodeling.

Periodontol 2000

December 2024

Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Periodontitis arises from imbalanced host-microbe interactions, leading to dysbiosis and destructive inflammation. The host's innate and adaptive immune responses produce pro-inflammatory mediators that stimulate destructive events, which cause loss of alveolar bone and connective tissue attachment. There is no consensus on the factors that lead to a conversion from gingivitis to periodontitis, but one possibility is the proximity of the inflammation to the bone, which promotes bone resorption and inhibits subsequent bone formation during coupled bone formation.

View Article and Find Full Text PDF

Current perspectives on the dynamic culture of mesenchymal stromal/stem cell spheroids.

Stem Cells Transl Med

December 2024

Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.

Mesenchymal stromal/stem cells (MSCs) are promising candidates for regenerative medicine owing to their self-renewal properties, multilineage differentiation, immunomodulatory effects, and angiogenic potential. MSC spheroids fabricated by 3D culture have recently shown enhanced therapeutic potential. MSC spheroids create a specialized niche with tight cell-cell and cell-extracellular matrix interactions, optimizing their cellular function by mimicking the in vivo environment.

View Article and Find Full Text PDF

Background: Real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) is a powerful tool for analysing target gene expression in biological samples. To achieve reliable results by RT-qPCR, the most stable reference genes must be selected for proper data normalisation, particularly when comparing cells of different types. We aimed to choose the least variable candidate reference genes among eight housekeeping genes tested within a set of human cancer cell lines (HeLa, MCF-7, SK-UT-1B, A549, A431, SK-BR-3), as well as four lines of normal, non-malignant mesenchymal stromal cells (MSCs) of different origins.

View Article and Find Full Text PDF

Background: Psoriasis is a chronic and incurable skin inflammation driven by an abnormal immune response. Our study aims to investigate the potential of interferon-γ (IFN-γ) primed mesenchymal stem cells (IMSCs) in targeting T cells to attenuate psoriasis-like inflammation, and to elucidate the underlying molecular mechanism involved.

Methods: Mesenchymal stem cells (MSCs) were isolated from the umbilical cord and identified based on their surface markers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!