Background: Functional and structural diversity of proteins of snake venoms is coupled with a wide repertoire of pharmacological effects. Snake venoms are targets of studies linked to searching molecules with biotechnological potential.
Methods: A homologue phospholipase A2 (BmatTX-IV) was obtained using two chromatographic techniques. Mass spectrometry and two-dimensional gel electrophoresis were used to determine the molecular mass and isoelectric point, respectively. By means of Edman degradation chemistry, it was possible to obtain the partial sequence of amino acids that comprise the isolated toxin. Trypanocidal, leishmanicidal and cytoxic activity against Trypanosoma cruzi, Leishmania infantum and murine fibrobasts was determinated.
Results: Combination of both chromatographic steps used in this study demonstrated efficacy to obtain the PLA2-Lys49. BmatTX-IV showed molecular mass and isoelectric point of 13.55 kDa and 9.3, respectively. Amino acid sequence of N-terminal region (51 residues) shows the presence of Lys49 residue at position 49, a distinctive trait of enzymatically inactive PLA2. Bothrops mattogrossensis snake venom showed IC50 values of 11.9 μg/mL against Leishmania infantum promastigotes and of 13.8 μg/mL against Trypanosoma cruzi epimastigotes, respectively. On the other hand, the venom showed a high cytotoxic activity (IC50 value of 16.7 μg/mL) against murine fibroblasts, whereas the BmatTX-IV showed IC50 value of 81.2 μg/mL.
Conclusion: Physicochemical and biological characterization of snake venoms components is critically important, since these complex mixtures provide a source of molecules with antiparasitic potential, making further studies necessary to identify and characterize components with higher efficacy and selectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1568026619666190723154756 | DOI Listing |
Int J Biol Macromol
January 2025
Fundação de Medicina Tropical - Dr Heitor Vieira Dourado, Manaus, AM, Brazil; Universidade Nilton Lins, Manaus, AM, Brazil. Electronic address:
Talanta
January 2025
Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia. Electronic address:
Envenomation accidents are usually diagnosed at the hospital through signs and symptoms assessment such as short breath, dizziness and vomiting, numbness, swilling, bruising, or bleeding around the affected site. However, this traditional method provides inaccurate diagnosis given the interface between snakebites and scorpion stings symptoms. Therefore, early determination of bites/stings source would help healthcare professionals select the suitable treatment for patients, thus improving envenomation management.
View Article and Find Full Text PDFChem Sci
January 2025
LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal
Snake venom-secreted phospholipases A (svPLAs) are critical, highly toxic enzymes present in almost all snake venoms. Upon snakebite envenomation, svPLAs hydrolyze cell membrane phospholipids and induce pathological effects such as paralysis, myonecrosis, inflammation, or pain. Despite its central importance in envenomation, the chemical mechanism of svPLAs is poorly understood, with detrimental consequences for the design of small-molecule snakebite antidotes, which is highly undesirable given the gravity of the epidemiological data that ranks snakebite as the deadliest neglected tropical disease.
View Article and Find Full Text PDFChem Biodivers
January 2025
Federal Fluminense University: Universidade Federal Fluminense, Molecular and Cellular Biology, . Prof. Marcos Waldemar de Freitas Reis - São Domingos, Bloco M, Campus Gragoatá, 24210-201, Niteroi, BRAZIL.
Snakebite envenomation is a public health issue that can lead to mortality and physical consequences. It is estimated that 5.4 million venomous snake bites occur annually, with 130,000 deaths and 400,000 amputations.
View Article and Find Full Text PDFTrans R Soc Trop Med Hyg
January 2025
Pharm-Biotechnology and Traditional Medicine Centre (PHARMBIOTRAC), Faculty of Medicine, Mbarara University of Science and Technology, Mbarara 40006, Uganda.
Snake venom, a complex mixture of proteins, has attracted human attention for centuries due to its associated mortality, morbidity and other therapeutic properties. In sub-Saharan Africa (SSA), where snakebites pose a significant health risk, understanding the genetic variability of snake venoms is crucial for developing effective antivenoms. The wide geographic distribution of venomous snake species in SSA countries demonstrates the need to develop specific and broad antivenoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!