Polymer surface patterning and modification at the micro/nano scale has been discovered with great impact in applications such as microfluidics and biomedical technologies. We propose a highly efficient fabricating strategy, to achieve a functional polymer surface, which has control over the surface roughness. The key development in this fabrication method is the polymer positive diffusion effect (PDE) for an ion-bombarded polymeric hybrid surface through focused ion beam (FIB) technology. The PDE is theoretically explored by introducing a positive diffusion term into the classic theory. The conductivity-induced PDE constant is discussed as functions of substrates conductivity, ion energy and flux. The theoretical results agree well with the experiential results on the conductivity-induced PDE, and thus yield good control over roughness and patterning milling depth on the fabricated surface. Moreover, we demonstrate a controllable surface wettability in hydrophobic and superhydrophobic surfaces (contact angles (CA) range from 108.3° to 150.8°) with different CA hysteresis values ranging from 31.4° to 8.3°.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6680857 | PMC |
http://dx.doi.org/10.3390/polym11071229 | DOI Listing |
Nano Lett
January 2025
Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China.
Rare-earth (RE) metals are known as industrial vitamins and show significant regulatory effects in many fields. In this work, we first demonstrated that the vitamin effect of RE metals can also be applied to extreme ultraviolet (EUV) lithography. Using a SnRE oxo cluster as the universal platform, different individual RE metal ions were successfully doped to obtain a series of isomorphic heterometallic clusters (RE = Y, Sm, Eu, Ho, Er).
View Article and Find Full Text PDFMicroscopy (Oxf)
January 2025
Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan.
Characterizing molten corium-concrete interaction (MCCI) fuel debris in Fukushima reactors is essential to develop efficient methods for its removal. To enhance the accuracy of microscopic observation and focused ion beam (FIB) microsampling of MCCI fuel debris, we developed a three-dimentional FIB scanning electron microscopy (SEM) technique with a multiphase positional misalignment (MPPM) correction method. This system automatically aligns voxel positions, corrects contrast, and removes artifacts from a series of over 500 SEM images.
View Article and Find Full Text PDFRadiat Res
January 2025
Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
Variable relative biological effectiveness (RBE) of carbon radiotherapy may be calculated using several models, including the microdosimetric kinetic model (MKM), stochastic MKM (SMKM), repair-misrepair-fixation (RMF) model, and local effect model I (LEM), which have not been thoroughly compared. In this work, we compared how these four models handle carbon beam fragmentation, providing insight into where model differences arise. Monoenergetic and spread-out Bragg peak carbon beams incident on a water phantom were simulated using Monte Carlo.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea.
The adhesion between metals and polymers plays a pivotal role in numerous industrial applications, especially within the automotive and aerospace sectors, where there is a growing demand for materials that are both lightweight and durable. This study introduces an innovative technique to improve the adhesion between a metal and a polymer in hybrid structures through the synergistic use of anodization and plasma treatment. By forming a nanoporous oxide layer on aluminum surfaces, anodization enhances the interface for polymer binding.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Biomedical Engineering, Iwate Medical University, Iwate 028-3694, Japan.
This study aimed to investigate the release of metallic ions from cobalt-chromium (Co-Cr) alloys fabricated by additive manufacturing (AM) for comparison with dental casting. Co-Cr alloys were fabricated via AM using selective laser melting (SLM) and electron beam melting (EBM) in powder-bed fusion. Polished and mechanically ground specimens were prepared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!