Degradation of DDTs in thermal desorption off-gas by pulsed corona discharge plasma.

Chemosphere

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.

Published: October 2019

Thermal desorption has been widely employed to treat soils contaminated with chlorinated organics. The off-gas of thermal desorption must be treated to avoid secondary pollution. In this study, the treatment of DDTs in thermal desorption off-gas by pulsed corona discharge plasma was investigated. The effects of important operation parameters, including energy density, gas temperature, humidity, and O content, on DDTs degradation were investigated. The main degradation products were also studied. The DDTs degradation efficiency increased with the increase in energy density, gas temperature, and O content. The degradation efficiency of DDTs was achieved to 84.6% when the initial concentration, energy density, and gas flow rate were 2.0 mg/m, 17.8 J/L, and 3.0 L/min, respectively. Maximum DDTs degradation efficiency was observed when the gas was at 5% relative humidity. The main degradation products identified were DM, phenol, benzene, acetic acid, and formic acid. It was calculated that 87% of chlorine in the degraded DDTs was converted into chloride ion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2019.05.292DOI Listing

Publication Analysis

Top Keywords

thermal desorption
16
energy density
12
density gas
12
ddts degradation
12
degradation efficiency
12
ddts thermal
8
desorption off-gas
8
off-gas pulsed
8
pulsed corona
8
corona discharge
8

Similar Publications

Due to their conductive properties and optoelectronic tunability, MXenes have revolutionized the area of electrocatalysis and active materials in supercapacitors. In comparison, there are only a few reports on MXenes as thermal catalysts for general organic reactions. Herein, the unprecedented catalytic activity of TiC MXene for the hydroamination of alkynes is reported, overcoming the limitations of poor activity, lack of selectivity, and stability, which are generally encountered in the solid catalysts known so far.

View Article and Find Full Text PDF

In the current work, three adsorbent materials were developed: biochar derived from date palm fiber (C), date palm fiber biochar/chitosan nanoparticles (CCS), and biochar/chitosan nanoparticle composite supplemented with glutamine (CCSG). These compounds were used as solid adsorbents to remove As from polluted water. Several characterization approaches were used to investigate all the synthesized solid adsorbents, including thermogravimetric analysis, N adsorption/desorption isotherm, scanning electron microscopy, transmission electron microscopy (TEM), attenuated total reflectance with Fourier transform infrared, and zeta potential.

View Article and Find Full Text PDF

Introduction: Breath Volatile organic compounds (VOCs) are promising biomarkers for clinical purposes due to their unique properties. Translation of VOC biomarkers into the clinic depends on identification and validation: a challenge requiring collaboration, well-established protocols, and cross-comparison of data. Previously, we developed a breath collection and analysis method, resulting in 148 breath-borne VOCs identified.

View Article and Find Full Text PDF

Qualitative and Quantitative Analysis of Tire Wear Particles (TWPs) in Road Dust Using a Novel Mode of Operation of TGA-GC/MS.

Environ Sci Technol Lett

January 2025

EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh, EH9 3FJ, United Kingdom.

Detecting and quantifying tire wear particles (TWPs) in the environment pose a unique environmental challenge due to their chemical complexity. There are emerging concerns around TWPs due to their potential high numbers of particles released, outnumbering microplastics, as well as the leaching of toxic additives such as 6-PPD which has been linked to the death of salmon even when present at very low levels (<0.1 μg/L).

View Article and Find Full Text PDF

We discuss the challenges associated with achieving high energy efficiency in electrochemical ammonia synthesis at near-ambient conditions. The current Li-mediated process has a theoretical maximum energy efficiency of ∼28%, since Li deposition gives rise to a very large effective overpotential. As a starting point toward finding electrocatalysts with lower effective overpotentials, we show that one reason why Li and alkaline earth metals work as N reduction electrocatalysts at ambient conditions is that the thermal elemental processes, N dissociation and NH desorption, are both facile at room temperature for these metals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!