AI Article Synopsis

  • The olfactory epithelium is constantly exposed to various chemicals, including odorants, and enzymes around olfactory receptors are crucial for detecting these smells.
  • Recent research shows that mammalian enzymes like cytochrome P450, esterases, and glutathione transferases (GSTs) help clear odorants, maintaining sensitivity to them.
  • Using diverse techniques, studies indicate that GSTs are key players in the rat olfactory process, with findings of GSTs in nasal mucus and their significant role in modulating odorant availability for receptor detection.

Article Abstract

The olfactory epithelium is continuously exposed to exogenous chemicals, including odorants. During the past decade, the enzymes surrounding the olfactory receptors have been shown to make an important contribution to the process of olfaction. Mammalian xenobiotic metabolizing enzymes, such as cytochrome P450, esterases and glutathione transferases (GSTs), have been shown to participate in odorant clearance from the olfactory receptor environment, consequently contributing to the maintenance of sensitivity toward odorants. GSTs have previously been shown to be involved in numerous physiological processes, including detoxification, steroid hormone biosynthesis, and amino acid catabolism. These enzymes ensure either the capture or the glutathione conjugation of a large number of ligands. Using a multi-technique approach (proteomic, immunocytochemistry and activity assays), our results indicate that GSTs play an important role in the rat olfactory process. First, proteomic analysis demonstrated the presence of different putative odorant metabolizing enzymes, including different GSTs, in the rat nasal mucus. Second, GST expression was investigated in situ in rat olfactory tissues using immunohistochemical methods. Third, the activity of the main GST (GSTM2) odorant was studied with in vitro experiments. Recombinant GSTM2 was used to screen a set of odorants and characterize the nature of its interaction with the odorants. Our results support a significant role of GSTs in the modulation of odorant availability for receptors in the peripheral olfactory process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6656353PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220259PLOS

Publication Analysis

Top Keywords

glutathione transferases
8
olfactory epithelium
8
metabolizing enzymes
8
rat olfactory
8
olfactory process
8
olfactory
7
gsts
5
characterization rat
4
rat glutathione
4
transferases olfactory
4

Similar Publications

Objectives: Glutathione S-transferase alpha (GSTα) is an important antioxidant enzyme closely associated with the onset and progression of neurodegenerative diseases. The alterations in GSTα protein levels associated with Alzheimer's disease and their impact on cognitive abilities remain unclear. Thus, investigating the fluctuations of GSTα protein levels in mild cognitive impairment (MCI) and Alzheimer's disease (AD) is essential.

View Article and Find Full Text PDF

Differential detoxification enzyme profiles in C-corn strain and R-rice strain of Spodoptera frugiperda by comparative genomic analysis: insights into host adaptation.

BMC Genomics

January 2025

Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, 550025, China.

Background: The fall armyworm (FAW) Spodoptera frugiperda, a highly invasive, polyphagous pest, poses a global agricultural threat. It has two strains, the C-corn and R-rice strains, each with distinct host preferences. This study compares detoxification enzyme gene families across these strains and related Spodoptera species to explore their adaptation to diverse host plant metabolites.

View Article and Find Full Text PDF

Introduction: Glutathione S-transferase (GST) has the ability to detoxify the cellular environment of xenobiotic compounds and by-products of oxidative stress. The expression levels of GST genes and their polymorphisms are associated with various human diseases. Methamphetamine and opiate addiction also account for a significant proportion of SUDs in Iran.

View Article and Find Full Text PDF

Curcumin (CUR) is a natural compound recognized for stimulating the expression of antioxidant genes. This characteristic has been used to promote animal health and production in aquaculture settings. We hypothesized that supplementing embryos of Crassostrea gigas oysters with CUR would improve their antioxidant capacity, development, and resilience to stress.

View Article and Find Full Text PDF

A novel glycosyltransferase gene RsUGT71B5 from Raphanus sativus L. regulated root growth and seedling development.

Plant Physiol Biochem

January 2025

College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, China. Electronic address:

The plant UDP-glycosyltransferases (UGTs) regulate several metabolic processes during root growth and development by conjugating sugar moieties to various small molecules. RsUGT71B5 is a novel UDP-glycosyltransferase in Raphanus sativus L., but its biological function is not well established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!