Background: Persistent antiphospholipid antibodies (aPL) constitute the serological hallmark of the antiphospholipid syndrome (APS). Recently, various new assay technologies for the detection of aPL better suited to multiplex reaction environments than ELISAs emerged. We evaluated the diagnostic performance of such a novel line immunoassay (LIA) for the simultaneous detection of 10 different aPL.

Methods: Fifty-three APS patients and 34 healthy controls were investigated for criteria (antibodies against cardiolipin [aCL], β2-glycoprotein I [aβ2-GPI]) and non-criteria aPL (antibodies against phosphatidic acid [aPA], phosphatidyl-choline [aPC], -ethanolamine [aPE], -glycerol [aPG], -inositol [aPI], -serine [aPS], annexin V [aAnnV], prothrombin [aPT]) IgG and IgM by LIA. Criteria aPL were additionally determined with the established Alegria (ALE), AcuStar (ACU), UniCap (UNI), and AESKULISA (AES) systems and non-criteria aPL with the AES system. Diagnostic performance was evaluated with a gold standard for criteria aPL derived from the results of the four established assays via latent class analysis and with the clinical diagnosis as gold standard for non-criteria aPL.

Results: Assay performance of the LIA for criteria aPL was comparable to that of ALE, ACU, UNI, and AES. For non-criteria aPL, sensitivities of the LIA for aPA-, aPI-, aPS-IgG and aPA-IgM were significantly higher and for aPC-, aPE-, aAnnV-IgG and aPC- and aPE-IgM significantly lower than AES. Specificities did not differ significantly.

Conclusions: The LIA constitutes a valuable diagnostic tool for aPL profiling. It offers increased sensitivity for the detection of aPL against anionic phospholipids. In contrast, ELISAs exhibit strengths for the sensitive detection of aPL against neutral phospholipids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6655644PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220033PLOS

Publication Analysis

Top Keywords

detection apl
12
non-criteria apl
12
criteria apl
12
apl
11
novel immunoassay
8
antiphospholipid antibodies
8
diagnostic performance
8
lia criteria
8
gold standard
8
detection
5

Similar Publications

An obstacle for many microfluidic developments is the fabrication of its structures, which is often complex, time-consuming, and expensive. Additive manufacturing can help to reduce these barriers. This study investigated whether the results of a microfluidic assay for the detection of the promyelocytic leukemia (PML)-retinoic acid receptor α (RARα) fusion protein (PML::RARA), and thus for the differential diagnosis of acute promyelocytic leukemia (APL), could be transferred from borosilicate glass microfluidic structures to additively manufactured fluidics.

View Article and Find Full Text PDF

The timely and accurate detection of brain tumors is crucial for effective medical intervention, especially in resource-constrained settings. This study proposes a lightweight and efficient RetinaNet variant tailored for medical edge device deployment. The model reduces computational overhead while maintaining high detection accuracy by replacing the computationally intensive ResNet backbone with MobileNet and leveraging depthwise separable convolutions.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) claims 900,000 lives per year. Colonoscopy offers reliable detection, but with low patient adherence rates. To significantly reduce CRC incidence and mortality, a more convenient screening measure for advanced precancerous lesions (APL) and CRC is urgently needed.

View Article and Find Full Text PDF

Olfactory perception can be studied in deep brain regions at high spatial resolutions with functional magnetic resonance imaging (fMRI), but this is complex and expensive. Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) are limited to cortical responses and lower spatial resolutions but are easier and cheaper to use. Unlike EEG, available fNIRS studies on olfaction are few, limited in scope, and contradictory.

View Article and Find Full Text PDF

Cell-free transcription amplification-based split-type electrochemical sensor using enzyme-linked magnetic microbeads for minimal residual leukemia detection.

Talanta

January 2025

Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, 350122, China; Department of Orthopaedics, Fujian Provincial Institute of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China. Electronic address:

Constrained by detecting techniques, patients with acute promyelocytic leukemia (APL) are often confronted with minimal residual disease (MRD) and a high risk of relapse. Thus, a pragmatic and robust method for MRD monitoring is urgently needed. Herein, a novel split-type electrochemical sensor (E-sensor) was developed by integrating nucleic acid sequence-based amplification (NASBA) with enzyme-linked magnetic microbeads (MMBs) for ultra-sensitive detection of the PML/RARα transcript.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!