The vestibulo-ocular reflex (VOR) is the only system that maintains stable vision during rapid head rotations. The VOR gain (eye/head velocity) can be trained to increase using a vestibular-visual mismatch stimulus. We sought to determine whether low-frequency (sinusoidal) head rotation during training leads to changes in the VOR during high-frequency head rotation testing, where the VOR is more physiologically relevant. We tested eight normal subjects over three sessions. For training , subjects performed active sinusoidal head rotations at 1.3 Hz while tracking a laser target, whose velocity incrementally increased relative to head velocity so that the VOR gain required to stabilize the target went from 1.1 to 2 over 15 min. was the same as , except that head rotations were at 0.5 Hz. For , head rotation frequency incrementally increased from 0.5 to 2 Hz over 15 min, while the VOR gain required to stabilize the target was kept at 2. We measured the active and passive, sinusoidal (1.3Hz) and head impulse VOR gains before and after each protocol. Sinusoidal and head impulse VOR gains increased in and ; however, although the sinusoidal VOR gain increase was ~20%, the related head impulse gain increase was only ~10%. resulted in no-gain adaptation. These data show human VOR adaptation is frequency selective, suggesting that if one seeks to increase the higher-frequency VOR response, i.e., where it is physiologically most relevant, then higher-frequency head movements are required during training, e.g., head impulses. This study shows that human vestibulo-ocular reflex adaptation is frequency selective at frequencies >0.3 Hz. The VOR in response to mid- (1.3 Hz) and high-frequency (impulse) head rotations were measured before and after mid-frequency sinusoidal VOR adaptation training, revealing that the mid-frequency gain change was higher than high-frequency gain change. Thus, if one seeks to increase the higher-frequency VOR response, where it is physiologically most relevant, then higher-frequency head movements are required during training.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.00162.2019 | DOI Listing |
Materials (Basel)
December 2024
Fraunhofer Institute for Machine Tools and Forming Technology IWU, Nöthnitzer Straße 44, 01187 Dresden, Germany.
Using a newly developed tool head with an additional rotational axis and a wire feed, wires can be directly processed in the fused filament fabrication (FFF) process. Thus, electrical structures such as conductive paths, coils, heating elements, or sensors can be integrated into polymer parts. However, the accuracy of the wire deposition in curved sections of the print track is insufficient.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
: Accurate determination of the natural head position (NHP) is essential in orthognathic surgery for optimal surgical planning and improved patient outcomes. However, traditional methods encounter reproducibility issues and rely on external devices or patient cooperation, potentially leading to inaccuracies in the surgical plan. : To address these limitations, we developed a geometric deep learning network (NHP-Net) to automatically reproduce NHP from CT scans.
View Article and Find Full Text PDFHead Face Med
January 2025
Department of Oral and Maxillofacial Surgery, Heinrich Heine University Hospital Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
Background: Virtual surgical planning for orthognathic surgery typically relies on two methods for intraoperative plan transfer: CAD/CAM occlusal splints and patient-specific implants (PSI). While CAD/CAM splints may offer limited accuracy, particularly in the vertical dimension, PSIs are constrained by higher costs and extended preparation times. Surgical navigation has emerged as a potential alternative, but existing protocols often involve invasive registration or lack transparent evaluation.
View Article and Find Full Text PDFHeliyon
January 2025
Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Kemivägen 10, 41296 Gothenburg.
Bulky cellulosic network structures (BRC) with densities between 60 and 130 g/l were investigated as a sustainable alternative to fossil-based foams for impact liners in bicycle helmets. The mechanical properties of BRC foams were characterized across a wide range of strain rates and incorporated into a validated finite element model of a hardshell helmet. Virtual impact tests simulating both consumer information and certification scenarios were conducted to compare BRC-lined helmets against conventional expanded polystyrene (EPS) designs.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
Many protein complexes are highly dynamic in cells; thus, characterizing their conformational changes in cells is crucial for unraveling their functions. Here, using cryo-electron microscopy, 451,700 ribosome particles from Saccharomyces cerevisiae cell lamellae were obtained to solve the 60S region to 2.9-Å resolution by in situ single-particle analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!