A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rapid Screen for Tyrosine Kinase Inhibitor Resistance Mutations and Substrate Specificity. | LitMetric

Rapid Screen for Tyrosine Kinase Inhibitor Resistance Mutations and Substrate Specificity.

ACS Chem Biol

Department of Chemistry and Biochemistry , The University of Texas at Austin , 1 University Station, Austin , Texas 78712 , United States.

Published: September 2019

We present a rapid and high-throughput yeast and flow cytometry based method for predicting kinase inhibitor resistance mutations and determining kinase peptide substrate specificity. Despite the widespread success of targeted kinase inhibitors as cancer therapeutics, resistance mutations arising within the kinase domain of an oncogenic target present a major impediment to sustained treatment efficacy. Our method, which is based on the previously reported YESS system, recapitulated all validated BCR-ABL1 mutations leading to clinical resistance to the second-generation inhibitor dasatinib, in addition to identifying numerous other mutations which have been previously observed in patients, but not yet validated as drivers of resistance. Further, we were able to demonstrate that the newer inhibitor ponatinib is effective against the majority of known single resistance mutations, but ineffective at inhibiting many compound mutants. These results are consistent with preliminary clinical and in vitro reports, indicating that mutations providing resistance to ponatinib are significantly less common; therefore, predicting ponatinib will be less susceptible to clinical resistance relative to dasatinib. Using the same yeast-based method, but with random substrate libraries, we were able to identify consensus peptide substrate preferences for the SRC and LYN kinases. ABL1 lacked an obvious consensus sequence, so a machine learning algorithm utilizing amino acid covariances was developed which accurately predicts ABL1 kinase peptide substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschembio.9b00283DOI Listing

Publication Analysis

Top Keywords

resistance mutations
16
kinase inhibitor
8
resistance
8
inhibitor resistance
8
substrate specificity
8
kinase peptide
8
peptide substrate
8
clinical resistance
8
mutations
7
kinase
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!