Potassium-ion batteries (KIBs) are promising alternatives to lithium-ion batteries because of the abundance and low cost of K. However, an important challenge faced by KIBs is the search for high-capacity materials that can hold large-diameter K ions. Herein, copper oxide (CuO) nanoplates are synthesized as high-performance anode materials for KIBs. CuO nanoplates with a thickness of ≈20 nm afford a large electrode-electrolyte contact interface and short K ion diffusion distance. As a consequence, a reversible capacity of 342.5 mAh g is delivered by the as-prepared CuO nanoplate electrode at 0.2 A g . Even after 100 cycles at a high current density of 1.0 A g , the capacity of the electrode remains over 206 mAh g , which is among the best values for KIB anodes reported in the literature. Moreover, a conversion reaction occurs at the CuO anode. Cu nanoparticles form during the first potassiation process and reoxidize to Cu O during the depotassiation process. Thereafter, the conversion reaction proceeds between the as-formed Cu O and Cu, yielding a reversible theoretical capacity of 374 mAh g . Considering their low cost, easy preparation, and environmental benignity, CuO nanoplates are promising KIB anode materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201901775 | DOI Listing |
Langmuir
December 2024
Department of Chemical Engineering, Faculty of Industrial Technology and System Engineering, Sepuluh Nopember Institute of Technology, Kampus ITS Sukolilo, Surabaya 60111, Indonesia.
To facilitate fast transfer of photogenerated electrons and surface stability, the CuO photocathode needs to be coupled with another heterojunction material. Here, we propose CuO/ZnO heterojunctions as photocathodes for photoelectrochemical (PEC) water splitting. First, CuO was grown on a Cu substrate, either in the form of a foil or mesh gauge, via anodization followed by postheating treatment.
View Article and Find Full Text PDFSci Rep
March 2024
Nanotechnology and Composite Materials Department, Advanced Technology and New Materials Research (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, 21934, Alexandria, Egypt.
Due to their high specific surface area and its characteristic's functionalized nanomaterials have great potential in medical applications specialty, as an anticancer. Herein, functional nanoparticles (NPs) based on iron oxide FeO, iron oxide modified with copper oxide FeO@CuO, and tungsten oxide WO were facile synthesized for biomedical applications. The obtained nanomaterials have nanocrystal sizes of 35.
View Article and Find Full Text PDFAnal Chem
February 2024
Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
As emerging contaminants in the environment, antibiotic resistance genes (ARGs) have aroused a global health crisis and posed a serious threat to ecological safety and human health. Thus, efficient and accurate onsite detection of ARGs is crucial for environmental surveillance. Here, we presented a colorimetric-photoelectrochemical (PEC) dual-mode bioassay for simultaneous detection of multiple ARGs by smartly incorporating rolling circle amplification (RCA) into a stimuli-responsive DNA nanoassembly, using the tetracycline resistance genes tetA and tetC as models.
View Article and Find Full Text PDFRSC Adv
August 2023
Institute of Science and Technology, TNU-University of Sciences Tan Thinh ward Thai Nguyen city 24000 Vietnam
CuO/ZnO nanocomposites with different components can overcome the drawbacks of previously used photocatalysts owing to their promotion in charge separation and transportation, light absorption, and the photo-oxidation of dyes. In this study, CuO nanoplates were synthesized by the hydrothermal method, while ZnO nanoparticles were fabricated by the precipitation method. A series of CuO/ZnO nanocomposites with different ZnO-to-CuO weight ratios, namely, 2 : 8, 4 : 6, 5 : 5, 6 : 4, and 8 : 2 were obtained a mixing process.
View Article and Find Full Text PDFSci Rep
July 2023
Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, El Fayoum, 63514, Egypt.
The present work aims to improve the uses of the carboxymethyl cellulose-polyacrylamide (Na-CMC-PAAm) blend for energy storage, optoelectronic applications, biological control, and plant disease management. Nano-sized materials (α-FeO nanoplates (NP), CuO NP, and GO nanosheets (NS), were synthesized and incorporated into the blend. The phase purity and morphologies of the used fillers were studied by XRD and HR-TEM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!