Twisting between two stacked monolayers modulates periodic potentials and forms the Moiré electronic superlattices, which offers an additional degree of freedom to alter material property. Considerable unique observations, including unconventional superconductivity, coupled spin-valley states, and quantized interlayer excitons are correlated to the electronic superlattices but further study requires reliable routes to study the Moiré in real space. Scanning tunneling microscopy (STM) is ideal to precisely probe the Moiré superlattice and correlate coupled parameters among local electronic structures, strains, defects, and band alignment at atomic scale. Here, a clean route is developed to construct twisted lattices using synthesized monolayers for fundamental studies. Diverse Moiré superlattices are predicted and successfully observed with STM at room temperature. Electrical tuning of the Moiré superlattice is achieved with stacked TMD on graphite.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201901077DOI Listing

Publication Analysis

Top Keywords

moiré superlattice
12
electronic superlattices
8
moiré
5
tunable moiré
4
superlattice artificially
4
artificially twisted
4
twisted monolayers
4
monolayers twisting
4
twisting stacked
4
stacked monolayers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!