Mechanistic insights into asymmetric transfer hydrogenation of pyruvic acid catalysed by chiral osmium complexes with formic acid assisted proton transfer.

Chem Commun (Camb)

Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

Published: August 2019

A density functional theory study of the asymmetric transfer hydrogenation of pyruvic acid to ł- and d-lactic acids catalysed by a chiral osmium complex OsH[(R,R)TsNCH(Ph)CH(Ph)NH](η-p-cymene) reveals a formic acid assisted enantio-determining proton-coupled hydride transfer mechanism. Activation strain model analysis indicates that the C-H/π interaction between η-arene and carboxyl ligands has a significant influence on the enantioselectivity. The replacement of p-cymene by 4-isopropyl biphenyl or phenyl is highly likely to improve the catalytic performance of the complex.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cc04760cDOI Listing

Publication Analysis

Top Keywords

asymmetric transfer
8
transfer hydrogenation
8
hydrogenation pyruvic
8
pyruvic acid
8
catalysed chiral
8
chiral osmium
8
formic acid
8
acid assisted
8
mechanistic insights
4
insights asymmetric
4

Similar Publications

Rational exploration of cost-effective, durable, and high-performance electrode materials is imperative for advancing the progress of capacitive deionization (CDI). The integration of multicomponent layered double hydroxides (LDHs) with conjugated conductive metal-organic frameworks (c-MOFs) to fabricate bifunctional heterostructure electrode materials is considered a promising strategy. Herein, the fabrication of hierarchical conductive MOF/LDH/CF nanoarchitectures (M-CAT/LDH/CF) as CDI anodes via a controllable grafted-growth strategy is reported.

View Article and Find Full Text PDF

An unusual chiral-at-metal mechanism for BINOL-metal asymmetric catalysis.

Nat Commun

January 2025

State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.

Chiral binaphthols (BINOL)-metal combinations serve as powerful catalysts in asymmetric synthesis. Their chiral induction mode, however, typically relies on multifarious non-covalent interactions between the substrate and the BINOL ligand. In this work, we demonstrate that the chiral-at-metal stereoinduction mode could serve as an alternative mechanism for BINOL-metal catalysis, based on mechanistic studies of BINOL-aluminum-catalyzed asymmetric hydroboration of heteroaryl ketones.

View Article and Find Full Text PDF

We develop fs laser-fabricated asymmetric couplers and zig-zag arrays consisting of single- and two-mode waveguides with bipartite Kerr nonlinearity in borosilicate (BK7) glass substrates. The fundamental mode ( orbital) is near resonance with the neighboring higher-order orbital, causing efficient light transfer at low power. Due to Kerr nonlinearity, the coupler works as an all-optical switch between and orbitals.

View Article and Find Full Text PDF

Cobalt-nickel metal-organic framework/activated carbon (MOF/AC) composites with tunable flower-like architectures were synthesized via a straightforward hydrothermal method, utilizing activated carbon as a structural and functional modifier. This modification increased the surface area from 20.3 m/g to 164.

View Article and Find Full Text PDF

Recent advances in organocatalytic atroposelective reactions.

Beilstein J Org Chem

January 2025

Department of Organic Chemistry, Faculty of Natural Science, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia.

Axial chirality is present in a variety of naturally occurring compounds, and is becoming increasingly relevant also in medicine. Many axially chiral compounds are important as catalysts in asymmetric catalysis or have chiroptical properties. This review overviews recent progress in the synthesis of axially chiral compounds via asymmetric organocatalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!