Sensitive fluorometric determination of glutathione using fluorescent polymer dots and the dopamine-melanin nanosystem.

Mikrochim Acta

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.

Published: July 2019

A bioinspired fluorometric method has been developed for the detection of glutathione (GSH) in biological fluids. It is based on the use of near-infrared fluorescent semiconducting polymer dots (P-dots) and of the dopamine (DA)-melanin nanosystem. The P-dots were prepared from poly(styrene-co-maleic anhydride), the semiconducting polymer poly[(9,9'-dioctyl-2,7-divinylenefluorenylene)-alt-2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene] and the fluorescent dye tetraphenylporphyrin. They have excitation/emission maxima at 458/656 nm, and this enables measurement to be performed with low autofluorescence and scattering background. DA can self-polymerize on the surface of the P-dots to yield a poly-DA coating. This coating, at weak alkaline pH values, causes the quenching of the fluorescence of the P-dots. However, the polymerization of DA is inhibited by GSH. Hence, quenching of fluorescence is prevented. This effect was used to design a fluorometric assay for GSH that has good selectivity and sensitivity. Under optimal conditions, the method has a linear response in the 0.2 to 20 μM GSH concentration range and a 60 nM detection limit. It was successfully applied to the determination of GSH in HepG2 cells and in spiked human serum. Graphical abstract Schematic representation of using a NIR fluorescent P-dots and dopamine (DA)-melanin nanohybrid as a probe for glutathione (GSH) detection. The P-dots were prepared from poly(styrene-co-maleic anhydride) (PSMA), the semiconducting polymer poly[(9,9'-dioctyl-2,7-divinylenefluorenylene)-alt-2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene] (PEPV) and the fluorescent dye tetraphenylporphyrin (TPP).The GSH can inhibit the dopamine self-polymerization and prevented the formation of PDA and fluorescence quenching of P-dots.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-019-3675-3DOI Listing

Publication Analysis

Top Keywords

semiconducting polymer
12
polymer dots
8
glutathione gsh
8
p-dots dopamine
8
dopamine da-melanin
8
p-dots prepared
8
prepared polystyrene-co-maleic
8
polystyrene-co-maleic anhydride
8
polymer poly[99'-dioctyl-27-divinylenefluorenylene-alt-2-methoxy-5-2-ethyl-hexyloxy-14-phenylene]
8
fluorescent dye
8

Similar Publications

Efficient room-temperature sensors for toxic gases are essential to ensure a safe and healthy life. Conducting frameworks have shown great promise in advancing gas sensing technologies. In this study, two new organic-inorganic frameworks [CuX(PPh)(L)], CP1 (X = I) and CP2 (X = Br) have been synthesized using (pyridin-4-yl)-N-(4H-1,2,4-triazol-4-yl)methanimine (L) and triphenylphosphine.

View Article and Find Full Text PDF

Osteoblastic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells on P3HT Thin Polymer Film.

J Funct Biomater

January 2025

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.

Bone defects restoration has always been an arduous challenge in the orthopedic field due to the limitations of conventional grafts. Bone tissue engineering offers an alternative approach by using biomimetic materials, stem cells, and growth factors that are able to improve the regeneration of bone tissue. Different biomaterials have attracted great interest in BTE applications, including the poly(3-hexylthiofene) (P3HT) conductive polymer, whose primary advantage is its capability to provide a native extracellular matrix-like environment.

View Article and Find Full Text PDF

Electrodes functionalised with weak electroactive microorganisms offer a viable alternative to conventional chemical sensors for detecting priority pollutants in bioremediation processes. Biofilm-based biosensors have been proposed for this purpose. However, biofilm formation and maturation require 24-48 h, and the microstructure and coverage of the electrode surface cannot be controlled, leading to poorly reproducible signal and sensitivity.

View Article and Find Full Text PDF

Conjugated coordination polymers (c-CPs), a novel class of organic-inorganic hybrid materials, are distinguished by their unique structural characteristics and exceptional charge transport properties. The electronic properties of these materials are critically determined by the constituting coordination atoms, with electron-rich selenol ligands emerging as promising candidates for constructing high-mobility semiconducting c-CPs. Currently, c-CPs incorporating selenium-substituted ligands remain scarce.

View Article and Find Full Text PDF

Energy crisis and environmental pollution are two central themes of contemporary research towards achieving sustainable development goals (SDGs). Material chemistry is the chief discipline that can resolve glitches in these areas through the appropriate design of chemical compounds with multifunctional properties. In this regard, two stable coordination polymers (CPs) were synthesised in this work using Zn(II) (3d) and Cd(II) (d) metal nodes with 1,4-benzenedicarboxylate () as the bridging ligand and monodentate pyridyl-N coordinated 9-fluoren-2-yl-pyridin-4-ylmethylene-amine (flpy) as the fluorogenic partner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!