Background: With the growth and expansion of human development, large mammals will increasingly encounter humans, elevating the likelihood of human-wildlife conflicts. Understanding the behavior and movement of large mammals, particularly around human development, is important for crafting effective conservation and management plans for these species.
Methods: We used GPS collar data from American black bears () to determine how seasonal food resources and human development affected bear movement patterns and resource use across the Commonwealth of Massachusetts.
Results: We found that though bears moved more and avoided human development during crepuscular and daylight hours than at night, bears preferentially moved through human dominated areas at night. This indicates bears were mitigating the risk of human development by altering their behavior to exploit these areas when human activity is low. This behavioral shift was most prominent in the spring, when natural foods are scarce, and fall, when energetic demands are high. We also observed a high degree of inter-individual variability among our sample of bears. Bears with a higher density of houses in their home ranges (~ 75 houses/km2) displayed less avoidance of human development than more rural bears. Furthermore, bear movement models had different explanatory variables, with preference or avoidance of a variable being dependent on the individual bear. To account for this individuality in our predictive surfaces, we projected the probability of movement for each season and time of day using a spatially weighted surface centered on each bear's home range.
Conclusions: We found that black bears in Massachusetts are operating in a landscape of fear and are altering their movement patterns to use developed areas when human activity is low. We also found seasonal and diel differences among individual bears in resource selection during movement. Accounting for these individual, seasonal, and diel differences when assessing movement for large mammals is especially important if predictive surfaces are to be used in identifying areas for conservation and management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6621962 | PMC |
http://dx.doi.org/10.1186/s40462-019-0166-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!