Human prostate cancer confined to the gland is indolent (low-risk), but tumors outside the capsule are aggressive (high-risk). Extracapsular extension requires invasion within and through a smooth muscle-structured environment. Because integrins respond to biomechanical cues, we used a gene editing approach to determine if a specific region of laminin-binding α6β1 integrin was required for smooth muscle invasion both and . Human tissue specimens showed prostate cancer invasion through smooth muscle and tumor coexpression of α6 integrin and E-cadherin in a cell-cell location and α6 integrin in a cell-extracellular matrix (ECM) distribution. Prostate cancer cells expressing α6 integrin (DU145 α6WT) produced a 3D invasive network on laminin-containing Matrigel and invaded into smooth muscle both and . In contrast, cells without α6 integrin (DU145 α6KO) and cells expressing an integrin mutant (DU145 α6AA) did not produce invasive networks, could not invade muscle both and , and surprisingly formed 3D cohesive clusters. Using electric cell-substrate impedance testing, cohesive clusters had up to a 30-fold increase in normalized resistance at 400 Hz (cell-cell impedance) as compared with the DU145 α6WT cells. In contrast, measurements at 40,000 Hz (cell-ECM coverage) showed that DU145 α6AA cells were two-fold decreased in normalized resistance and were defective in restoring resistance after a 1 μmol/L S1P challenge as compared with the DU145 α6WT cells. The results suggest that gene editing of a specific α6 integrin extracellular region, not required for normal tissue function, can generate a new biophysical cancer phenotype unable to invade the muscle, presenting a new therapeutic strategy for metastasis prevention in prostate cancer. SIGNIFICANCE: This study shows an innovative strategy to block prostate cancer metastasis and invasion in the muscle through gene editing of a specific α6 integrin extracellular region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6750953PMC
http://dx.doi.org/10.1158/0008-5472.CAN-19-0868DOI Listing

Publication Analysis

Top Keywords

α6 integrin
28
prostate cancer
24
gene editing
16
smooth muscle
12
du145 α6wt
12
integrin
9
invasive networks
8
invasion smooth
8
cells expressing
8
integrin du145
8

Similar Publications

Platelet destruction in immune thrombocytopenia is caused by autoreactive antibody and T-cell responses, most commonly directed against platelet glycoprotein IIb/IIIa. Loss of self-tolerance in the disease is also associated with deficient activity of regulatory T cells. Having previously mapped seven major epitopes on platelet glycoprotein IIIa that are recognized by helper T cells from patients with immune thrombocytopenia, the aim was to test whether peptide therapy with any of these sequences, alone or in combination, could inhibit responses to the antigen in humanized mice expressing HLA-DR15.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!