A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metabolic profiles to predict long-term cancer and mortality: the use of latent class analysis. | LitMetric

Background: Metabolites are genetically and environmentally determined. Consequently, they can be used to characterize environmental exposures and reveal biochemical mechanisms that link exposure to disease. To explore disease susceptibility and improve population risk stratification, we aimed to identify metabolic profiles linked to carcinogenesis and mortality and their intrinsic associations by characterizing subgroups of individuals based on serum biomarker measurements. We included 13,615 participants from the Swedish Apolipoprotein MOrtality RISk Study who had measurements for 19 biomarkers representative of central metabolic pathways. Latent Class Analysis (LCA) was applied to characterise individuals based on their biomarker values (according to medical cut-offs), which were then examined as predictors of cancer and death using multivariable Cox proportional hazards models.

Results: LCA identified four metabolic profiles within the population: (1) normal values for all markers (63% of population); (2) abnormal values for lipids (22%); (3) abnormal values for liver functioning (9%); (4) abnormal values for iron and inflammation metabolism (6%). All metabolic profiles (classes 2-4) increased risk of cancer and mortality, compared to class 1 (e.g. HR for overall death was 1.26 (95% CI: 1.16-1.37), 1.67 (95% CI: 1.47-1.90), and 1.21 (95% CI: 1.05-1.41) for class 2, 3, and 4, respectively).

Conclusion: We present an innovative approach to risk stratify a well-defined population based on LCA metabolic-defined subgroups for cancer and mortality. Our results indicate that standard of care baseline serum markers, when assembled into meaningful metabolic profiles, could help assess long term risk of disease and provide insight in disease susceptibility and etiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6651931PMC
http://dx.doi.org/10.1186/s12860-019-0210-7DOI Listing

Publication Analysis

Top Keywords

metabolic profiles
20
cancer mortality
12
abnormal values
12
latent class
8
class analysis
8
disease susceptibility
8
individuals based
8
metabolic
6
mortality
5
risk
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!